Answer
Verified
501.3k+ views
Here, we will solve for the roots by using the polar form of a complex number.
Since, $
{\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( {64} \right)^{\dfrac{1}{4}}}{\left( {{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( {{2^6}} \right)^{\dfrac{1}{4}}}\left( a \right) = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{6}{4}}}\left( a \right) \\
\Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right){\text{ }} \to {\text{(1)}} \\
$
As we know that $\left( { - 1} \right)$ can be represented in polar form as $ - 1 = \cos \pi + i\left( {\sin \pi } \right)$
Substituting the above value of $\left( { - 1} \right)$ in equation (1), we get
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left[ {\cos \pi + i\left( {\sin \pi } \right)} \right]^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)$
Also, we know that $\cos \theta = cos\left( {2n\pi + \theta } \right)$ and $\sin \theta = \sin \left( {2n\pi + \theta } \right)$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right){\left[ {\cos \left( {2n\pi + \pi } \right) + i\left( {\sin \left( {2n\pi + \pi } \right)} \right)} \right]^{\dfrac{1}{4}}}$
Using identity ${\left( {\cos \theta + i\sin \theta } \right)^n} = {\left( {{e^{i\theta }}} \right)^n} = {e^{i\left( {n\theta } \right)}} = \cos \left( {n\theta } \right) + i\sin \left( {n\theta } \right)$, we can write
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2n\pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2n\pi + \pi } \right)}}{4}} \right]} \right)} \right]$ where $n = 0,1,2,..$
The required roots can be obtained by putting the different values of $n$
For $n = 0$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 0 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 0 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{\pi }{4}} \right) + i\left( {\sin \left( {\dfrac{\pi }{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{\pi }{4}} \right) = \sin \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( {\dfrac{1}{{\sqrt 2 }}} \right) + i\left( {\dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 + i}}{{\sqrt 2 }}} \right] = 2a\left( {1 + i} \right)$
For $n = 1$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 1 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 1 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{3\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{3\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{3\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{3\pi }}{4}} \right) = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( { - \dfrac{1}{{\sqrt 2 }}} \right) + i\left( {\dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{ - 1 + i}}{{\sqrt 2 }}} \right] = - 2a\left( {1 - i} \right)$
For $n = 2$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 2 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 2 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{5\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{5\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( { - \dfrac{1}{{\sqrt 2 }}} \right) + i\left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right] = - \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 + i}}{{\sqrt 2 }}} \right] = - 2a\left( {1 + i} \right)$
For $n = 3$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 3 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 3 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{7\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{7\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{5\pi }}{4}} \right) = \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( {\dfrac{1}{{\sqrt 2 }}} \right) + i\left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 - i}}{{\sqrt 2 }}} \right] = 2a\left( {1 - i} \right)$
For rest of the values of $n$, the roots will repeat so the final four required roots of ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}}$ where $\left( {a \in R} \right)$ can be collectively represented as $ \pm 2a\left( {1 \pm i} \right)$.
Note- In these type of problems, the given expression is represented in polar form of a complex number so that the power of that expression can be easily solved by using the formula for ${e^{i\left( {n\theta } \right)}}$ and further various roots can be obtained by putting different values of $n$.
Since, $
{\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( {64} \right)^{\dfrac{1}{4}}}{\left( {{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( {{2^6}} \right)^{\dfrac{1}{4}}}\left( a \right) = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{6}{4}}}\left( a \right) \\
\Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right){\text{ }} \to {\text{(1)}} \\
$
As we know that $\left( { - 1} \right)$ can be represented in polar form as $ - 1 = \cos \pi + i\left( {\sin \pi } \right)$
Substituting the above value of $\left( { - 1} \right)$ in equation (1), we get
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left[ {\cos \pi + i\left( {\sin \pi } \right)} \right]^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)$
Also, we know that $\cos \theta = cos\left( {2n\pi + \theta } \right)$ and $\sin \theta = \sin \left( {2n\pi + \theta } \right)$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right){\left[ {\cos \left( {2n\pi + \pi } \right) + i\left( {\sin \left( {2n\pi + \pi } \right)} \right)} \right]^{\dfrac{1}{4}}}$
Using identity ${\left( {\cos \theta + i\sin \theta } \right)^n} = {\left( {{e^{i\theta }}} \right)^n} = {e^{i\left( {n\theta } \right)}} = \cos \left( {n\theta } \right) + i\sin \left( {n\theta } \right)$, we can write
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2n\pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2n\pi + \pi } \right)}}{4}} \right]} \right)} \right]$ where $n = 0,1,2,..$
The required roots can be obtained by putting the different values of $n$
For $n = 0$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 0 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 0 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{\pi }{4}} \right) + i\left( {\sin \left( {\dfrac{\pi }{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{\pi }{4}} \right) = \sin \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( {\dfrac{1}{{\sqrt 2 }}} \right) + i\left( {\dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 + i}}{{\sqrt 2 }}} \right] = 2a\left( {1 + i} \right)$
For $n = 1$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 1 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 1 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{3\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{3\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{3\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{3\pi }}{4}} \right) = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( { - \dfrac{1}{{\sqrt 2 }}} \right) + i\left( {\dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{ - 1 + i}}{{\sqrt 2 }}} \right] = - 2a\left( {1 - i} \right)$
For $n = 2$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 2 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 2 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{5\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{5\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( { - \dfrac{1}{{\sqrt 2 }}} \right) + i\left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right] = - \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 + i}}{{\sqrt 2 }}} \right] = - 2a\left( {1 + i} \right)$
For $n = 3$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 3 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 3 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{7\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{7\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{5\pi }}{4}} \right) = \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( {\dfrac{1}{{\sqrt 2 }}} \right) + i\left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 - i}}{{\sqrt 2 }}} \right] = 2a\left( {1 - i} \right)$
For rest of the values of $n$, the roots will repeat so the final four required roots of ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}}$ where $\left( {a \in R} \right)$ can be collectively represented as $ \pm 2a\left( {1 \pm i} \right)$.
Note- In these type of problems, the given expression is represented in polar form of a complex number so that the power of that expression can be easily solved by using the formula for ${e^{i\left( {n\theta } \right)}}$ and further various roots can be obtained by putting different values of $n$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE