Answer
Verified
432.3k+ views
Hint:
Here, we have to find the value of the variable. We can solve the equation by using the trigonometric identity. Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles.
Formula Used:
We will use the following formulae:
1) Exponential Rule: \[{\left( {{a^x}} \right)^{\dfrac{1}{y}}} = {a^{\dfrac{x}{y}}}\]; \[{x^0} = 1\]
2) Logarithmic Rule: \[\log {a^b} = b\log a\]; \[{\log _a}a = 1\]
3) Trigonometric Identity: \[\sin (2\pi + \theta ) = \sin \theta ;\]
Complete step by step solution:
We are given with an equation \[\sin \left( {x + \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^\theta }}}} \right) = \cos \left( {x + \dfrac{{{{\left( { - 1} \right)}^{16}}}}{2} - \dfrac{{{{\log }_2}\left( {\sqrt 8 } \right)}}{3}} \right)\]
First, we are converting the complex term inside the braces into a more simpler form.
Now, for the first term \[\dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}}\], we will get
Exponential Rule: \[{\left( {{a^x}} \right)^{\dfrac{1}{y}}} = {a^{\dfrac{x}{y}}}\]and \[{x^0} = 1\]
By using the exponential rule, we have
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{{\pi ^3} + 2{\pi ^3}}}{{2{\pi ^2}}} + {\pi ^1}\]
Adding the like terms, we will get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3{\pi ^3}}}{{2{\pi ^2}}} + \pi \]
Dividing the term, we will get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3\pi }}{2} + \pi \]
By taking L.C.M., we will get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3\pi }}{2} + \pi \times \dfrac{2}{2}\]
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3\pi }}{2} + \dfrac{{2\pi }}{2}\]
Adding the like terms, we get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{5\pi }}{2}\]
Rewriting the equation, we get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = 2\pi + \dfrac{\pi }{2}\]
Now,
By Rewriting the equation, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{{{\log }_2}\sqrt {{2^3}} }}{3}\]
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{{{\log }_2}{2^{\dfrac{3}{2}}}}}{3}\]
Logarithmic Rule: \[\log {a^b} = b\log a\]
By using logarithmic rule, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{\dfrac{3}{2}{{\log }_2}2}}{3}\]
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{3{{\log }_2}2}}{{2 \cdot 3}}\]
Dividing both the terms, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{{{\log }_2}2}}{2}\]
Logarithmic Rule: \[{\log _a}a = 1\]
By using logarithmic rule, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{1}{2}\]
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = 0\]
Now, by using the equation and substituting the values, we get
\[ \Rightarrow \sin \left( {x + \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^\theta }}}} \right) = \cos \left( {x + \dfrac{{{{\left( { - 1} \right)}^{16}}}}{2} - \dfrac{{{{\log }_2}\left( {\sqrt 8 } \right)}}{3}} \right)\]
\[ \Rightarrow \sin \left( {x + 2\pi + \dfrac{\pi }{2}} \right) = \cos \left( {x + 0} \right)\]
\[ \Rightarrow \sin \left( {2\pi + \dfrac{\pi }{2} + x} \right) = \cos \left( x \right)\]
Trigonometric Identity: \[\sin (2\pi + \theta ) = \sin \theta \]
Now, by using the trigonometric identity, we get
\[ \Rightarrow \sin \left( {\dfrac{\pi }{2} + x} \right) = \cos \left( x \right)\]
This equation holds true for all \[x \in {\bf{R}}\].
So, \[x = 0,\dfrac{\pi }{2}\].
Therefore, the two values of \[x\] that satisfy the equation are \[0,\dfrac{\pi }{2}\]
Note:
We should make sure of using the trigonometric identity, exponential rule, the logarithmic rule at the right place. A trigonometric equation will also have a general solution expressing all the values which would satisfy the given equation, and it is expressed in a generalized form in terms of ‘n’. Thus the trigonometric equation always possess various solutions.
Here, we have to find the value of the variable. We can solve the equation by using the trigonometric identity. Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles.
Formula Used:
We will use the following formulae:
1) Exponential Rule: \[{\left( {{a^x}} \right)^{\dfrac{1}{y}}} = {a^{\dfrac{x}{y}}}\]; \[{x^0} = 1\]
2) Logarithmic Rule: \[\log {a^b} = b\log a\]; \[{\log _a}a = 1\]
3) Trigonometric Identity: \[\sin (2\pi + \theta ) = \sin \theta ;\]
Complete step by step solution:
We are given with an equation \[\sin \left( {x + \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^\theta }}}} \right) = \cos \left( {x + \dfrac{{{{\left( { - 1} \right)}^{16}}}}{2} - \dfrac{{{{\log }_2}\left( {\sqrt 8 } \right)}}{3}} \right)\]
First, we are converting the complex term inside the braces into a more simpler form.
Now, for the first term \[\dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}}\], we will get
Exponential Rule: \[{\left( {{a^x}} \right)^{\dfrac{1}{y}}} = {a^{\dfrac{x}{y}}}\]and \[{x^0} = 1\]
By using the exponential rule, we have
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{{\pi ^3} + 2{\pi ^3}}}{{2{\pi ^2}}} + {\pi ^1}\]
Adding the like terms, we will get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3{\pi ^3}}}{{2{\pi ^2}}} + \pi \]
Dividing the term, we will get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3\pi }}{2} + \pi \]
By taking L.C.M., we will get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3\pi }}{2} + \pi \times \dfrac{2}{2}\]
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3\pi }}{2} + \dfrac{{2\pi }}{2}\]
Adding the like terms, we get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{5\pi }}{2}\]
Rewriting the equation, we get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = 2\pi + \dfrac{\pi }{2}\]
Now,
By Rewriting the equation, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{{{\log }_2}\sqrt {{2^3}} }}{3}\]
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{{{\log }_2}{2^{\dfrac{3}{2}}}}}{3}\]
Logarithmic Rule: \[\log {a^b} = b\log a\]
By using logarithmic rule, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{\dfrac{3}{2}{{\log }_2}2}}{3}\]
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{3{{\log }_2}2}}{{2 \cdot 3}}\]
Dividing both the terms, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{{{\log }_2}2}}{2}\]
Logarithmic Rule: \[{\log _a}a = 1\]
By using logarithmic rule, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{1}{2}\]
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = 0\]
Now, by using the equation and substituting the values, we get
\[ \Rightarrow \sin \left( {x + \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^\theta }}}} \right) = \cos \left( {x + \dfrac{{{{\left( { - 1} \right)}^{16}}}}{2} - \dfrac{{{{\log }_2}\left( {\sqrt 8 } \right)}}{3}} \right)\]
\[ \Rightarrow \sin \left( {x + 2\pi + \dfrac{\pi }{2}} \right) = \cos \left( {x + 0} \right)\]
\[ \Rightarrow \sin \left( {2\pi + \dfrac{\pi }{2} + x} \right) = \cos \left( x \right)\]
Trigonometric Identity: \[\sin (2\pi + \theta ) = \sin \theta \]
Now, by using the trigonometric identity, we get
\[ \Rightarrow \sin \left( {\dfrac{\pi }{2} + x} \right) = \cos \left( x \right)\]
This equation holds true for all \[x \in {\bf{R}}\].
So, \[x = 0,\dfrac{\pi }{2}\].
Therefore, the two values of \[x\] that satisfy the equation are \[0,\dfrac{\pi }{2}\]
Note:
We should make sure of using the trigonometric identity, exponential rule, the logarithmic rule at the right place. A trigonometric equation will also have a general solution expressing all the values which would satisfy the given equation, and it is expressed in a generalized form in terms of ‘n’. Thus the trigonometric equation always possess various solutions.
Recently Updated Pages
What is the maximum resistance which can be made using class 10 physics CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
In the following figure the value of resistor to be class 10 physics CBSE
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
For a simple pendulum a graph is plotted between its class 11 physics JEE_Main
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE