Answer
Verified
434.7k+ views
Hint:First of all we will take the given expression and take differentiation with respect to “x” and “y” one by one and then find the factors and place the values of one variable to get the value for the other variable.
Complete step by step solution:
Take the given expression:
$f(x,y) = {x^3} + xy - {y^3}$
Differentiate the above expression with respect to “x”
\[\dfrac{d}{{dx}}f(x,y) = \dfrac{d}{{dx}}({x^3} + xy - {y^3})\]
Apply differentiation to all the terms on the right hand side of the equation inside the bracket.
\[{f_x} = \dfrac{d}{{dx}}({x^3}) + \dfrac{d}{{dx}}(xy) - \dfrac{d}{{dx}}({y^3})\]
Apply the formula in the above equation and place the value in it.
\[{f_x} = 3{x^2} + y\]
To find the critical value in the above equation equal to zero.
\[0 = 3{x^2} + y\] …. (A)
Similarly take derivative in the given expression with respect to “y”
\[\dfrac{d}{{dy}}f(x,y) = \dfrac{d}{{dy}}({x^3} + xy - {y^3})\]
Apply differentiation to all the terms on the right hand side of the equation inside the bracket.
\[{f_y} = \dfrac{d}{{dy}}({x^3}) + \dfrac{d}{{dy}}(xy) - \dfrac{d}{{dy}}({y^3})\]
Apply the formula in the above equation and place the value in it.
\[{f_y} = x - 3{y^2}\]
To find the critical value in the above equation equal to zero.
\[0 = x - 3{y^2}\] …. (B)
Take equation (A)
\[y = - 3{x^2}\]
Place the above value in the equation (B)
\[x - 3{( - 3{x^2})^2} = 0\]
Simplify the above equation-
\[x - 27{x^4} = 0\]
Finding the factors of the above equation.
$ \Rightarrow x(1 - 27{x^3}) = 0$
Implies
$x = 0$ …. (C)
or $1 - 27{x^3} = 0$
Simplify the above equation:
$1 = 27{x^3}$
When term multiplicative on one side is moved to the opposite side, then it goes to the
denominator.
$ \Rightarrow {x^3} = \dfrac{1}{{27}}$
Take a cube-root on both the sides of the equation.
$ \Rightarrow x = \dfrac{1}{3}$ …. (D)
Using the equation (C) and equation (A)
\[0 = 3{x^2} + y\]
Make “y” the subject, when any term is moved from one side to another the sign of the term also changes.
$y = - 3{x^2}$
Place $x = 0$
$ \Rightarrow y = - 3(0)$
Zero multiplied with anything gives zero.
$ \Rightarrow y = 0$ … (E)
Now, Place $x = \dfrac{1}{3}$ in equation (A)
$ \Rightarrow y = - \dfrac{1}{3}$
Hence, the critical points are: $(0,0)$ and $\left( {\dfrac{1}{3}, - \dfrac{1}{3}} \right)$
Note: Be careful about the sign convention when doing simplification. When you move any term from one side to another then the sign of the term also changes. Positive terms become negative and vice-versa.
Complete step by step solution:
Take the given expression:
$f(x,y) = {x^3} + xy - {y^3}$
Differentiate the above expression with respect to “x”
\[\dfrac{d}{{dx}}f(x,y) = \dfrac{d}{{dx}}({x^3} + xy - {y^3})\]
Apply differentiation to all the terms on the right hand side of the equation inside the bracket.
\[{f_x} = \dfrac{d}{{dx}}({x^3}) + \dfrac{d}{{dx}}(xy) - \dfrac{d}{{dx}}({y^3})\]
Apply the formula in the above equation and place the value in it.
\[{f_x} = 3{x^2} + y\]
To find the critical value in the above equation equal to zero.
\[0 = 3{x^2} + y\] …. (A)
Similarly take derivative in the given expression with respect to “y”
\[\dfrac{d}{{dy}}f(x,y) = \dfrac{d}{{dy}}({x^3} + xy - {y^3})\]
Apply differentiation to all the terms on the right hand side of the equation inside the bracket.
\[{f_y} = \dfrac{d}{{dy}}({x^3}) + \dfrac{d}{{dy}}(xy) - \dfrac{d}{{dy}}({y^3})\]
Apply the formula in the above equation and place the value in it.
\[{f_y} = x - 3{y^2}\]
To find the critical value in the above equation equal to zero.
\[0 = x - 3{y^2}\] …. (B)
Take equation (A)
\[y = - 3{x^2}\]
Place the above value in the equation (B)
\[x - 3{( - 3{x^2})^2} = 0\]
Simplify the above equation-
\[x - 27{x^4} = 0\]
Finding the factors of the above equation.
$ \Rightarrow x(1 - 27{x^3}) = 0$
Implies
$x = 0$ …. (C)
or $1 - 27{x^3} = 0$
Simplify the above equation:
$1 = 27{x^3}$
When term multiplicative on one side is moved to the opposite side, then it goes to the
denominator.
$ \Rightarrow {x^3} = \dfrac{1}{{27}}$
Take a cube-root on both the sides of the equation.
$ \Rightarrow x = \dfrac{1}{3}$ …. (D)
Using the equation (C) and equation (A)
\[0 = 3{x^2} + y\]
Make “y” the subject, when any term is moved from one side to another the sign of the term also changes.
$y = - 3{x^2}$
Place $x = 0$
$ \Rightarrow y = - 3(0)$
Zero multiplied with anything gives zero.
$ \Rightarrow y = 0$ … (E)
Now, Place $x = \dfrac{1}{3}$ in equation (A)
$ \Rightarrow y = - \dfrac{1}{3}$
Hence, the critical points are: $(0,0)$ and $\left( {\dfrac{1}{3}, - \dfrac{1}{3}} \right)$
Note: Be careful about the sign convention when doing simplification. When you move any term from one side to another then the sign of the term also changes. Positive terms become negative and vice-versa.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
10 examples of friction in our daily life
Can anyone list 10 advantages and disadvantages of friction