
How do you find $\dfrac{{dy}}{{dx}}$ if $x + \tan \left( {xy} \right) = 0$ ?
Answer
466.2k+ views
Hint: In this question, we are given an equation and we have been asked to find its derivative. You will have to use chain rule while answering this question. First, simply find the derivative. While differentiating the second term of the given equation, using chain rule. After that, use some very basic trigonometric formulae to simplify the answer.
Formula used: 1) $\dfrac{{d\left( x \right)}}{{dx}} = 1$
2) $\dfrac{{d\left( {\tan x} \right)}}{{dx}} = {\sec ^2}x$
Complete step-by-step solution:
We are given an equation $x + \tan \left( {xy} \right) = 0$.
Let us differentiate both the sides with respect to x.
$ \Rightarrow x + \tan \left( {xy} \right) = 0$
Differentiating both the sides with respect to x,
$ \Rightarrow \dfrac{d}{{dx}}\left( {x + \tan \left( {xy} \right)} \right) = \dfrac{{d\left( 0 \right)}}{{dx}}$
$ \Rightarrow 1 + {\sec ^2}\left( {xy} \right) \times \dfrac{{d\left( {xy} \right)}}{{dx}} = 0$ …. (Here, we used chain rule to find the derivative of$\tan \left( {xy} \right)$)
Differentiating using chain rule and product rule,
$ \Rightarrow 1 + {\sec ^2}\left( {xy} \right) \times \left[ {x\dfrac{{dy}}{{dx}} + y} \right] = 0$
Opening the brackets,
$ \Rightarrow 1 + x{\sec ^2}\left( {xy} \right)\dfrac{{dy}}{{dx}} + y{\sec ^2}xy = 0$
Shifting all the terms to the RHS, other than the term containing$\dfrac{{dy}}{{dx}}$,
$ \Rightarrow x{\sec ^2}\left( {xy} \right)\dfrac{{dy}}{{dx}} = - \left( {y{{\sec }^2}xy + 1} \right)$
Now, we will shift the co-efficient of $\dfrac{{dy}}{{dx}}$,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \left( {y{{\sec }^2}xy + 1} \right)}}{{x{{\sec }^2}xy}}$
Expanding the RHS,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \left( {\dfrac{{y{{\sec }^2}xy}}{{x{{\sec }^2}xy}} + \dfrac{1}{{x{{\sec }^2}xy}}} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \left( {\dfrac{y}{x} + \dfrac{{{{\cos }^2}xy}}{x}} \right)$ …. $\left( {\dfrac{1}{{\sec x}} = \cos x} \right)$
Hence, $\dfrac{{dy}}{{dx}}$ of $x + \tan \left( {xy} \right) = 0$ is $ - \left( {\dfrac{y}{x} + \dfrac{{{{\cos }^2}xy}}{x}} \right)$.
Note: Chain rule: What is chain rule? This rule is used to find the derivative of composite functions. In a composite function, there is an outer function and an inner function. Correct identification of these functions is very important. Let us understand chain rule with the help of an example.
For example: $\tan \left( {xy} \right)$ is a composite function, where $\tan x$ is an outer function and $xy$ is an inner function. How do we find its derivative? At first, we differentiate the outer function and assume the inner function to be x (if we are differentiating with respect to x). In the next step, we differentiate the inner function.
Hence, correct identification of outer and inner function correctly is very important.
Formula used: 1) $\dfrac{{d\left( x \right)}}{{dx}} = 1$
2) $\dfrac{{d\left( {\tan x} \right)}}{{dx}} = {\sec ^2}x$
Complete step-by-step solution:
We are given an equation $x + \tan \left( {xy} \right) = 0$.
Let us differentiate both the sides with respect to x.
$ \Rightarrow x + \tan \left( {xy} \right) = 0$
Differentiating both the sides with respect to x,
$ \Rightarrow \dfrac{d}{{dx}}\left( {x + \tan \left( {xy} \right)} \right) = \dfrac{{d\left( 0 \right)}}{{dx}}$
$ \Rightarrow 1 + {\sec ^2}\left( {xy} \right) \times \dfrac{{d\left( {xy} \right)}}{{dx}} = 0$ …. (Here, we used chain rule to find the derivative of$\tan \left( {xy} \right)$)
Differentiating using chain rule and product rule,
$ \Rightarrow 1 + {\sec ^2}\left( {xy} \right) \times \left[ {x\dfrac{{dy}}{{dx}} + y} \right] = 0$
Opening the brackets,
$ \Rightarrow 1 + x{\sec ^2}\left( {xy} \right)\dfrac{{dy}}{{dx}} + y{\sec ^2}xy = 0$
Shifting all the terms to the RHS, other than the term containing$\dfrac{{dy}}{{dx}}$,
$ \Rightarrow x{\sec ^2}\left( {xy} \right)\dfrac{{dy}}{{dx}} = - \left( {y{{\sec }^2}xy + 1} \right)$
Now, we will shift the co-efficient of $\dfrac{{dy}}{{dx}}$,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \left( {y{{\sec }^2}xy + 1} \right)}}{{x{{\sec }^2}xy}}$
Expanding the RHS,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \left( {\dfrac{{y{{\sec }^2}xy}}{{x{{\sec }^2}xy}} + \dfrac{1}{{x{{\sec }^2}xy}}} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \left( {\dfrac{y}{x} + \dfrac{{{{\cos }^2}xy}}{x}} \right)$ …. $\left( {\dfrac{1}{{\sec x}} = \cos x} \right)$
Hence, $\dfrac{{dy}}{{dx}}$ of $x + \tan \left( {xy} \right) = 0$ is $ - \left( {\dfrac{y}{x} + \dfrac{{{{\cos }^2}xy}}{x}} \right)$.
Note: Chain rule: What is chain rule? This rule is used to find the derivative of composite functions. In a composite function, there is an outer function and an inner function. Correct identification of these functions is very important. Let us understand chain rule with the help of an example.
For example: $\tan \left( {xy} \right)$ is a composite function, where $\tan x$ is an outer function and $xy$ is an inner function. How do we find its derivative? At first, we differentiate the outer function and assume the inner function to be x (if we are differentiating with respect to x). In the next step, we differentiate the inner function.
Hence, correct identification of outer and inner function correctly is very important.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
