Answer
Verified
497.4k+ views
Hint: To solve this question we should use chain rule and also remember differentiation of $\log x$ .
Complete step-by-step answer:
We will need following facts to solve this question
(a) Differentiation of ${{\log }_{e}}x$ is given by- $\dfrac{d}{dx}\left( {{\log }_{e}}x \right)=\dfrac{1}{x}$ ……….(i)
(b) Differentiation of $k{{x}^{n}}$ where k and n are constants is given by- $\dfrac{d}{dx}(k{{x}^{n}})=k.n.{{x}^{n-1}}$ ………(ii)
We have $y=\log (4x-{{x}^{5}})$ . Differentiating both sides with respect to x we get,
$\dfrac{dy}{dx}=\dfrac{d}{dx}\{\log (4x-{{x}^{5}})\}$
Now we will proceed step by step.
We differentiate first the logarithmic term with the help of equation (i) according to the chain rule
$\dfrac{dy}{dx}=\dfrac{1}{4x-{{x}^{5}}}\dfrac{d}{dx}(4x-{{x}^{5}})$
Now we need to differentiate the polynomial term. For this we write,
\[\dfrac{dy}{dx}=\dfrac{1}{4x-{{x}^{5}}}\left\{ \dfrac{d}{dx}(4x)-\dfrac{d}{dx}({{x}^{5}}) \right\}\]
Now we use equation (ii) to solve this differential. So, we have,
\[\dfrac{dy}{dx}=\dfrac{1}{4x-{{x}^{5}}}(4-5{{x}^{4}})\]
By further simplification we can write,
$\dfrac{dy}{dx}=\dfrac{4-5{{x}^{4}}}{4x-{{x}^{5}}}$
Hence, the answer is $\dfrac{4-5{{x}^{4}}}{4x-{{x}^{5}}}$
Note:
We should also keep in mind the base of the logarithm when we are differentiating. We must make the base of logarithm as e when we try to differentiate as equation (i) is only valid when the base is e.
There can be another way to solve this differentiation.
As we know,
${{\log }_{a}}b=c\Rightarrow b={{a}^{c}}$
We can use the following result too in our question and proceed.
We have, $y=\log (4x-{{x}^{5}})$
Using the above property we can write,
$4x-{{x}^{5}}={{e}^{y}}$
Again we can differentiate with respect to x both sides and proceed.
$\dfrac{d}{dx}(4x-{{x}^{5}})=\dfrac{d}{dx}({{e}^{y}})$
Now we can apply chain rule and proceed as earlier,
$(4-5{{x}^{4}})={{e}^{y}}\dfrac{dy}{dx}$
Dividing both sides with ${{e}^{y}}$ we have,
$\dfrac{dy}{dx}=\dfrac{4-5{{x}^{4}}}{{{e}^{y}}}$
Substituting y we have,
$\dfrac{dy}{dx}=\dfrac{4-5{{x}^{4}}}{{{e}^{\log (4x-{{x}^{5}})}}}$
Now we need the following property of exponential: ${{a}^{{{\log }_{a}}b}}=b$
Therefore, we can write
$\dfrac{dy}{dx}=\dfrac{4-5{{x}^{4}}}{4x-{{x}^{5}}}$
As we can see by both methods we get exactly the same answer.
Complete step-by-step answer:
We will need following facts to solve this question
(a) Differentiation of ${{\log }_{e}}x$ is given by- $\dfrac{d}{dx}\left( {{\log }_{e}}x \right)=\dfrac{1}{x}$ ……….(i)
(b) Differentiation of $k{{x}^{n}}$ where k and n are constants is given by- $\dfrac{d}{dx}(k{{x}^{n}})=k.n.{{x}^{n-1}}$ ………(ii)
We have $y=\log (4x-{{x}^{5}})$ . Differentiating both sides with respect to x we get,
$\dfrac{dy}{dx}=\dfrac{d}{dx}\{\log (4x-{{x}^{5}})\}$
Now we will proceed step by step.
We differentiate first the logarithmic term with the help of equation (i) according to the chain rule
$\dfrac{dy}{dx}=\dfrac{1}{4x-{{x}^{5}}}\dfrac{d}{dx}(4x-{{x}^{5}})$
Now we need to differentiate the polynomial term. For this we write,
\[\dfrac{dy}{dx}=\dfrac{1}{4x-{{x}^{5}}}\left\{ \dfrac{d}{dx}(4x)-\dfrac{d}{dx}({{x}^{5}}) \right\}\]
Now we use equation (ii) to solve this differential. So, we have,
\[\dfrac{dy}{dx}=\dfrac{1}{4x-{{x}^{5}}}(4-5{{x}^{4}})\]
By further simplification we can write,
$\dfrac{dy}{dx}=\dfrac{4-5{{x}^{4}}}{4x-{{x}^{5}}}$
Hence, the answer is $\dfrac{4-5{{x}^{4}}}{4x-{{x}^{5}}}$
Note:
We should also keep in mind the base of the logarithm when we are differentiating. We must make the base of logarithm as e when we try to differentiate as equation (i) is only valid when the base is e.
There can be another way to solve this differentiation.
As we know,
${{\log }_{a}}b=c\Rightarrow b={{a}^{c}}$
We can use the following result too in our question and proceed.
We have, $y=\log (4x-{{x}^{5}})$
Using the above property we can write,
$4x-{{x}^{5}}={{e}^{y}}$
Again we can differentiate with respect to x both sides and proceed.
$\dfrac{d}{dx}(4x-{{x}^{5}})=\dfrac{d}{dx}({{e}^{y}})$
Now we can apply chain rule and proceed as earlier,
$(4-5{{x}^{4}})={{e}^{y}}\dfrac{dy}{dx}$
Dividing both sides with ${{e}^{y}}$ we have,
$\dfrac{dy}{dx}=\dfrac{4-5{{x}^{4}}}{{{e}^{y}}}$
Substituting y we have,
$\dfrac{dy}{dx}=\dfrac{4-5{{x}^{4}}}{{{e}^{\log (4x-{{x}^{5}})}}}$
Now we need the following property of exponential: ${{a}^{{{\log }_{a}}b}}=b$
Therefore, we can write
$\dfrac{dy}{dx}=\dfrac{4-5{{x}^{4}}}{4x-{{x}^{5}}}$
As we can see by both methods we get exactly the same answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE