
Find $\dfrac{{dy}}{{dx}}{\text{ of }}{x^3} + {x^2}y + x{y^2} + {y^3} = 81$
Answer
624.9k+ views
Hint: Apply chain rule. Also differentiation of a constant term is always zero.
Given equation, ${x^3} + {x^2}y + x{y^2} + {y^3} = 81$
Differentiate both sides with respect to $x$, we get
$
\dfrac{{d\left( {{x^3} + {x^2}y + x{y^2} + {y^3}} \right)}}{{dx}} = \dfrac{{d\left( {81} \right)}}{{dx}} \\
\Rightarrow 3{x^2} + \left( {y.2x + {x^2}\dfrac{{dy}}{{dx}}} \right) + \left( {{y^2}.1 + x.2y.\dfrac{{dy}}{{dx}}} \right) + 3{y^2}\dfrac{{dy}}{{dx}} = 0 \\
$
Rearranging the above equation, we get
\[
\Rightarrow \left( {{x^2} + 2xy + 3{y^2}} \right)\dfrac{{dy}}{{dx}} + \left( {3{x^2} + 2xy + {y^2}} \right) = 0 \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \left( {3{x^2} + 2xy + {y^2}} \right)}}{{\left( {{x^2} + 2xy + 3{y^2}} \right)}} \\
\]
Note: Whenever there are two different functions inside a derivative, the first step you'll need to take is to use the product rule. This rule tells you what to do when you are trying to take the derivative of the product of two functions. The product rule says that if you have two functions f and g, then the derivative of fg is fg' + f'g.
Given equation, ${x^3} + {x^2}y + x{y^2} + {y^3} = 81$
Differentiate both sides with respect to $x$, we get
$
\dfrac{{d\left( {{x^3} + {x^2}y + x{y^2} + {y^3}} \right)}}{{dx}} = \dfrac{{d\left( {81} \right)}}{{dx}} \\
\Rightarrow 3{x^2} + \left( {y.2x + {x^2}\dfrac{{dy}}{{dx}}} \right) + \left( {{y^2}.1 + x.2y.\dfrac{{dy}}{{dx}}} \right) + 3{y^2}\dfrac{{dy}}{{dx}} = 0 \\
$
Rearranging the above equation, we get
\[
\Rightarrow \left( {{x^2} + 2xy + 3{y^2}} \right)\dfrac{{dy}}{{dx}} + \left( {3{x^2} + 2xy + {y^2}} \right) = 0 \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \left( {3{x^2} + 2xy + {y^2}} \right)}}{{\left( {{x^2} + 2xy + 3{y^2}} \right)}} \\
\]
Note: Whenever there are two different functions inside a derivative, the first step you'll need to take is to use the product rule. This rule tells you what to do when you are trying to take the derivative of the product of two functions. The product rule says that if you have two functions f and g, then the derivative of fg is fg' + f'g.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

