Answer
Verified
498.3k+ views
Hint: Use the integration by parts formula,
\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\] with $u(x)=x$ and $v(x)=\sin x$. and substitute upper and lower limit values.
“Complete step-by-step answer:”
First, let us decompose the function that we have to find the integration of (the integrand) into two functions.
Thus, $\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\int\limits_{0}^{{\pi }/{2}\;}{\left( x \right)\cdot \left( \sin x \right)dx}$
We do this so that now we have two different functions and each of these functions is a simple function. Now, since we have 2 different functions, we can use integration by parts to solve the required integration. Using the ILATE rule for integration by parts, we can apply the formula\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\].
In the above formula, by the ILATE rule, the function $u(x)=x$ and $v(x)=\sin x$.
Using these in the formula,
\[\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=x\cdot \int{\sin xdx}-\int{\left( \dfrac{d}{dx}\left( x \right)\cdot \int{\sin xdx} \right)dx}\ \ \ \ \ \ \ \ldots \left( 1 \right)\]
We know that \[\dfrac{d}{dx}\left( x \right)=1\] and\[\int{\sin xdx}=-\cos x\]
Using the values of \[\dfrac{d}{dx}\left( x \right)=1\] and \[\int{\sin xdx}=-\cos x\] in the equation (1)
\[\begin{align}
& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=x\cdot \int{\sin xdx}-\int{\left( \dfrac{d}{dx}\left( x \right)\cdot \int{\sin xdx} \right)dx} \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( x \right)\cdot \left( -\cos x \right)-\int{\left( 1\cdot \left( \cos x \right) \right)dx} \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-x\cos x-\int{\cos xdx}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 2 \right) \\
\end{align}\]
We know that \[\int{\cos xdx}=\sin x\]
Using the value of \[\int{\cos xdx}=\sin x\] in equation (2),
\[\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-x\cos x-\sin x+C\]
Putting in the lower and upper limit in the integration obtained,
\[\begin{align}
& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -x\cos x-\sin x+C \right)_{0}^{{\pi }/{2}\;} \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -\dfrac{\pi }{2}\cos \left( \dfrac{\pi }{2} \right)-\sin \left( \dfrac{\pi }{2} \right) \right)-\left( 0\cos 0-\sin 0 \right)\ \ \ \ \ \ \ \ldots \left( 3 \right) \\
\end{align}\]
Now we know that the value of $\cos \dfrac{\pi }{2}=0,\ \cos 0=1,\ \sin \dfrac{\pi }{2}=1$and $\sin 0=0$
Using these values in equation 3 we get
\[\begin{align}
& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( \left( -\dfrac{\pi }{2} \right)\cdot \left( 0 \right)-1 \right)-\left( \left( 0 \right)\cdot \left( 1 \right)-0 \right) \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -1 \right)-0 \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-1 \\
\end{align}\]
Thus the required integration of $\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}$ is -1.
Note: The question is a basic question of integration by parts, but it is important to do the calculations carefully. One can be easily confused in the calculations involved with lots of positive and negative signs. To keep things simple, first find the complete indefinite integral and then put in limits.
\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\] with $u(x)=x$ and $v(x)=\sin x$. and substitute upper and lower limit values.
“Complete step-by-step answer:”
First, let us decompose the function that we have to find the integration of (the integrand) into two functions.
Thus, $\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\int\limits_{0}^{{\pi }/{2}\;}{\left( x \right)\cdot \left( \sin x \right)dx}$
We do this so that now we have two different functions and each of these functions is a simple function. Now, since we have 2 different functions, we can use integration by parts to solve the required integration. Using the ILATE rule for integration by parts, we can apply the formula\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\].
In the above formula, by the ILATE rule, the function $u(x)=x$ and $v(x)=\sin x$.
Using these in the formula,
\[\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=x\cdot \int{\sin xdx}-\int{\left( \dfrac{d}{dx}\left( x \right)\cdot \int{\sin xdx} \right)dx}\ \ \ \ \ \ \ \ldots \left( 1 \right)\]
We know that \[\dfrac{d}{dx}\left( x \right)=1\] and\[\int{\sin xdx}=-\cos x\]
Using the values of \[\dfrac{d}{dx}\left( x \right)=1\] and \[\int{\sin xdx}=-\cos x\] in the equation (1)
\[\begin{align}
& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=x\cdot \int{\sin xdx}-\int{\left( \dfrac{d}{dx}\left( x \right)\cdot \int{\sin xdx} \right)dx} \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( x \right)\cdot \left( -\cos x \right)-\int{\left( 1\cdot \left( \cos x \right) \right)dx} \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-x\cos x-\int{\cos xdx}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 2 \right) \\
\end{align}\]
We know that \[\int{\cos xdx}=\sin x\]
Using the value of \[\int{\cos xdx}=\sin x\] in equation (2),
\[\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-x\cos x-\sin x+C\]
Putting in the lower and upper limit in the integration obtained,
\[\begin{align}
& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -x\cos x-\sin x+C \right)_{0}^{{\pi }/{2}\;} \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -\dfrac{\pi }{2}\cos \left( \dfrac{\pi }{2} \right)-\sin \left( \dfrac{\pi }{2} \right) \right)-\left( 0\cos 0-\sin 0 \right)\ \ \ \ \ \ \ \ldots \left( 3 \right) \\
\end{align}\]
Now we know that the value of $\cos \dfrac{\pi }{2}=0,\ \cos 0=1,\ \sin \dfrac{\pi }{2}=1$and $\sin 0=0$
Using these values in equation 3 we get
\[\begin{align}
& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( \left( -\dfrac{\pi }{2} \right)\cdot \left( 0 \right)-1 \right)-\left( \left( 0 \right)\cdot \left( 1 \right)-0 \right) \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -1 \right)-0 \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-1 \\
\end{align}\]
Thus the required integration of $\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}$ is -1.
Note: The question is a basic question of integration by parts, but it is important to do the calculations carefully. One can be easily confused in the calculations involved with lots of positive and negative signs. To keep things simple, first find the complete indefinite integral and then put in limits.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE