
Find $\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}$
Answer
620.4k+ views
Hint: Use the integration by parts formula,
\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\] with $u(x)=x$ and $v(x)=\sin x$. and substitute upper and lower limit values.
“Complete step-by-step answer:”
First, let us decompose the function that we have to find the integration of (the integrand) into two functions.
Thus, $\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\int\limits_{0}^{{\pi }/{2}\;}{\left( x \right)\cdot \left( \sin x \right)dx}$
We do this so that now we have two different functions and each of these functions is a simple function. Now, since we have 2 different functions, we can use integration by parts to solve the required integration. Using the ILATE rule for integration by parts, we can apply the formula\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\].
In the above formula, by the ILATE rule, the function $u(x)=x$ and $v(x)=\sin x$.
Using these in the formula,
\[\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=x\cdot \int{\sin xdx}-\int{\left( \dfrac{d}{dx}\left( x \right)\cdot \int{\sin xdx} \right)dx}\ \ \ \ \ \ \ \ldots \left( 1 \right)\]
We know that \[\dfrac{d}{dx}\left( x \right)=1\] and\[\int{\sin xdx}=-\cos x\]
Using the values of \[\dfrac{d}{dx}\left( x \right)=1\] and \[\int{\sin xdx}=-\cos x\] in the equation (1)
\[\begin{align}
& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=x\cdot \int{\sin xdx}-\int{\left( \dfrac{d}{dx}\left( x \right)\cdot \int{\sin xdx} \right)dx} \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( x \right)\cdot \left( -\cos x \right)-\int{\left( 1\cdot \left( \cos x \right) \right)dx} \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-x\cos x-\int{\cos xdx}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 2 \right) \\
\end{align}\]
We know that \[\int{\cos xdx}=\sin x\]
Using the value of \[\int{\cos xdx}=\sin x\] in equation (2),
\[\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-x\cos x-\sin x+C\]
Putting in the lower and upper limit in the integration obtained,
\[\begin{align}
& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -x\cos x-\sin x+C \right)_{0}^{{\pi }/{2}\;} \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -\dfrac{\pi }{2}\cos \left( \dfrac{\pi }{2} \right)-\sin \left( \dfrac{\pi }{2} \right) \right)-\left( 0\cos 0-\sin 0 \right)\ \ \ \ \ \ \ \ldots \left( 3 \right) \\
\end{align}\]
Now we know that the value of $\cos \dfrac{\pi }{2}=0,\ \cos 0=1,\ \sin \dfrac{\pi }{2}=1$and $\sin 0=0$
Using these values in equation 3 we get
\[\begin{align}
& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( \left( -\dfrac{\pi }{2} \right)\cdot \left( 0 \right)-1 \right)-\left( \left( 0 \right)\cdot \left( 1 \right)-0 \right) \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -1 \right)-0 \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-1 \\
\end{align}\]
Thus the required integration of $\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}$ is -1.
Note: The question is a basic question of integration by parts, but it is important to do the calculations carefully. One can be easily confused in the calculations involved with lots of positive and negative signs. To keep things simple, first find the complete indefinite integral and then put in limits.
\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\] with $u(x)=x$ and $v(x)=\sin x$. and substitute upper and lower limit values.
“Complete step-by-step answer:”
First, let us decompose the function that we have to find the integration of (the integrand) into two functions.
Thus, $\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\int\limits_{0}^{{\pi }/{2}\;}{\left( x \right)\cdot \left( \sin x \right)dx}$
We do this so that now we have two different functions and each of these functions is a simple function. Now, since we have 2 different functions, we can use integration by parts to solve the required integration. Using the ILATE rule for integration by parts, we can apply the formula\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\].
In the above formula, by the ILATE rule, the function $u(x)=x$ and $v(x)=\sin x$.
Using these in the formula,
\[\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=x\cdot \int{\sin xdx}-\int{\left( \dfrac{d}{dx}\left( x \right)\cdot \int{\sin xdx} \right)dx}\ \ \ \ \ \ \ \ldots \left( 1 \right)\]
We know that \[\dfrac{d}{dx}\left( x \right)=1\] and\[\int{\sin xdx}=-\cos x\]
Using the values of \[\dfrac{d}{dx}\left( x \right)=1\] and \[\int{\sin xdx}=-\cos x\] in the equation (1)
\[\begin{align}
& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=x\cdot \int{\sin xdx}-\int{\left( \dfrac{d}{dx}\left( x \right)\cdot \int{\sin xdx} \right)dx} \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( x \right)\cdot \left( -\cos x \right)-\int{\left( 1\cdot \left( \cos x \right) \right)dx} \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-x\cos x-\int{\cos xdx}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 2 \right) \\
\end{align}\]
We know that \[\int{\cos xdx}=\sin x\]
Using the value of \[\int{\cos xdx}=\sin x\] in equation (2),
\[\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-x\cos x-\sin x+C\]
Putting in the lower and upper limit in the integration obtained,
\[\begin{align}
& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -x\cos x-\sin x+C \right)_{0}^{{\pi }/{2}\;} \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -\dfrac{\pi }{2}\cos \left( \dfrac{\pi }{2} \right)-\sin \left( \dfrac{\pi }{2} \right) \right)-\left( 0\cos 0-\sin 0 \right)\ \ \ \ \ \ \ \ldots \left( 3 \right) \\
\end{align}\]
Now we know that the value of $\cos \dfrac{\pi }{2}=0,\ \cos 0=1,\ \sin \dfrac{\pi }{2}=1$and $\sin 0=0$
Using these values in equation 3 we get
\[\begin{align}
& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( \left( -\dfrac{\pi }{2} \right)\cdot \left( 0 \right)-1 \right)-\left( \left( 0 \right)\cdot \left( 1 \right)-0 \right) \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -1 \right)-0 \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-1 \\
\end{align}\]
Thus the required integration of $\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}$ is -1.
Note: The question is a basic question of integration by parts, but it is important to do the calculations carefully. One can be easily confused in the calculations involved with lots of positive and negative signs. To keep things simple, first find the complete indefinite integral and then put in limits.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

