Answer
Verified
460.5k+ views
Hint: To divide the exponents or the powers with the same base or the same term, simply subtract the powers. As, the division is just the opposite of the multiplication, so when you add the powers in the multiplication, just subtract the powers in case of the division with the same base. For example \[{{2}^{5}}\div {{2}^{2}}={{2}^{5-2}}={{2}^{3}}\]
Complete step-by-step answer:
Here, by using the property – in case of division of the powers with the same base, simply subtracting the powers
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}-\dfrac{7}{6}}}$
Take LCM of the powers on the right hand side of the equation
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{18}{24}-\dfrac{28}{24}}}$
Now, simply the power on the right hand side of the equation. Using the identity of minus and plus, do minus and sign of greater value.
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{-10}{24}}}$
Taking “two common” from the numerator and denominator of the power on RHS
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{-5}{12}}}$
Therefore, the required solution is –
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{-5}{12}}}$
Note: Always remember all the rules of multiplication and division of the fractions. Remember two basic rules - Multiply the given terms with the exponents using the general rule: ${{y}^{a}}\times {{y}^{b}}={{y}^{a+b}}$ and similarly the divide terms with the exponents using the rule: ${{y}^{a}}\div {{y}^{b}}={{y}^{a-b}}$. Do simplification carefully. Rest goes perfect in these types of questions.
Complete step-by-step answer:
Here, by using the property – in case of division of the powers with the same base, simply subtracting the powers
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}-\dfrac{7}{6}}}$
Take LCM of the powers on the right hand side of the equation
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{18}{24}-\dfrac{28}{24}}}$
Now, simply the power on the right hand side of the equation. Using the identity of minus and plus, do minus and sign of greater value.
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{-10}{24}}}$
Taking “two common” from the numerator and denominator of the power on RHS
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{-5}{12}}}$
Therefore, the required solution is –
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{-5}{12}}}$
Note: Always remember all the rules of multiplication and division of the fractions. Remember two basic rules - Multiply the given terms with the exponents using the general rule: ${{y}^{a}}\times {{y}^{b}}={{y}^{a+b}}$ and similarly the divide terms with the exponents using the rule: ${{y}^{a}}\div {{y}^{b}}={{y}^{a-b}}$. Do simplification carefully. Rest goes perfect in these types of questions.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE