Answer
Verified
449.4k+ views
Hint: Firstly know about the arithmetic progression. Then we use the concept of the arithmetic progression.After that we calculate the value of the \[n\]. Then substitute the value of the \[n\] in the \[n - 2,4n - 1\] and \[5n + 2\].
Formula used: If three numbers \[a,b\] and \[c\] are in A.P. then
\[2b = a + c\]
Complete step-by-step solution:
It is given that \[n - 2,4n - 1\] and \[5n + 2\] are in A.P. then we use the concept of arithmetic progression
According to the concept
$\Rightarrow$\[2\left( {4n - 1} \right) = n - 2 + 5n + 2\]
\[4n - 1\] is multiplied by \[2\] we get
$\Rightarrow$\[8n - 2 = n - 2 + 5n + 2\]
By addition of \[n - 2\] and \[5n + 2\] we get
$\Rightarrow$\[8n - 2 = 6n\]
Rewrite the equation after simplification we get
$\Rightarrow$\[8n - 6n - 2 = 0\]
Substract \[6n\] from \[8n\] we get
$\Rightarrow$\[2n - 2 = 0\]
Rewrite the equation after simplification we get \[2n = 2\]
\[2\] is divided by \[2\]we get
$\Rightarrow$\[\dfrac{2}{2} = 1\]
Hence the value of \[n\] is \[1\]
Substitute the value of \[n\] in \[n - 2,4n - 1\] and \[5n + 2\] we get
\[\
n - 1 \\
1 - 1 = 0
\ \]
Value of \[4n - 1\] is
\[4n - 1 = 4 \times 1 - 1 = 3\]
Value of \[5n + 2\] is
\[5n + 2 = 5 \times 1 + 2 = 7\]
Hence the value of \[n\] is 1 and numbers are \[0,3\] and \[7\]
Note: Arithmetic progression is a sequence whose terms increase or decrease by a fixed number. Fixed number is called the common difference.
If \[a\] is the first term and \[d\] is the common difference , then arithmetic progression can be written as \[a,a + d,a + 2d................a + \left( {n - 1} \right)d\]
\[{n^{th}}\] term of the arithmetic progression \[{t_n} = a + \left( {n - 1} \right)d\]
Formula used: If three numbers \[a,b\] and \[c\] are in A.P. then
\[2b = a + c\]
Complete step-by-step solution:
It is given that \[n - 2,4n - 1\] and \[5n + 2\] are in A.P. then we use the concept of arithmetic progression
According to the concept
$\Rightarrow$\[2\left( {4n - 1} \right) = n - 2 + 5n + 2\]
\[4n - 1\] is multiplied by \[2\] we get
$\Rightarrow$\[8n - 2 = n - 2 + 5n + 2\]
By addition of \[n - 2\] and \[5n + 2\] we get
$\Rightarrow$\[8n - 2 = 6n\]
Rewrite the equation after simplification we get
$\Rightarrow$\[8n - 6n - 2 = 0\]
Substract \[6n\] from \[8n\] we get
$\Rightarrow$\[2n - 2 = 0\]
Rewrite the equation after simplification we get \[2n = 2\]
\[2\] is divided by \[2\]we get
$\Rightarrow$\[\dfrac{2}{2} = 1\]
Hence the value of \[n\] is \[1\]
Substitute the value of \[n\] in \[n - 2,4n - 1\] and \[5n + 2\] we get
\[\
n - 1 \\
1 - 1 = 0
\ \]
Value of \[4n - 1\] is
\[4n - 1 = 4 \times 1 - 1 = 3\]
Value of \[5n + 2\] is
\[5n + 2 = 5 \times 1 + 2 = 7\]
Hence the value of \[n\] is 1 and numbers are \[0,3\] and \[7\]
Note: Arithmetic progression is a sequence whose terms increase or decrease by a fixed number. Fixed number is called the common difference.
If \[a\] is the first term and \[d\] is the common difference , then arithmetic progression can be written as \[a,a + d,a + 2d................a + \left( {n - 1} \right)d\]
\[{n^{th}}\] term of the arithmetic progression \[{t_n} = a + \left( {n - 1} \right)d\]
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE