Answer
Verified
498.6k+ views
Hint: Use property of logarithm that is \[{{\log }_{a}}a=1\]and ${{\log }_{c}}a-{{\log }_{c}}b={{\log }_{c}}\left( \dfrac{a}{b} \right)$to simplify the given relation. Use a graphical approach to find values of ‘x’ for simplicity.
Complete step-by-step answer:
Here, it is given that ${{\log }_{0.5}}\sin x=1-{{\log }_{0.5}}\cos x$, and then we need to determine all the values of x lying in$\left[ -2\pi ,2\pi \right]$.
We have
${{\log }_{0.5}}\sin x=1-{{\log }_{0.5}}\cos x\ldots \ldots (1)$
As we know the property of the logarithm function that \[{{\log }_{a}}a=1\] where $a>0$and $a\ne 1$.
Or vice-versa is also true. It means we can replace ‘1’ from equation (1) by \[{{\log }_{0.5}}0.5\]for the simplification of the problem.
Hence, equation (1) can be written as
${{\log }_{0.5}}\sin x={{\log }_{0.5}}0.5-{{\log }_{0.5}}\cos x$
We can use property of logarithm ${{\log }_{c}}a-{{\log }_{c}}b={{\log }_{c}}\left( \dfrac{a}{b} \right)$, with the above equation and get
${{\log }_{0.5}}\sin x={{\log }_{0.5}}\left( \dfrac{0.5}{\cos x} \right)\ldots \ldots (2)$
As we know that ‘a’ should be equal to ‘b’ if ${{\log }_{c}}a={{\log }_{c}}b$.
Hence, using the above property with equation (2), we get
$\dfrac{\sin x}{1}=\dfrac{0.5}{\cos x}$
On cross-multiplying, we get
$\sin x\cos x=\dfrac{1}{2}$or $2\sin x\cos x=1\ldots \ldots (3)$
As we know the trigonometric identity of $\sin 2x$as $\sin 2x=2\sin x\cos x$or vice-versa.
Hence, equation (3) can be given as
$\sin 2x=1\ldots \ldots (4)$
Now, we have to find ‘x’ in the interval$\left[ -2\pi ,2\pi \right]$.
So we have $-2\pi \le x\le 2\pi $
Multiplying by ‘2’ on each side we get
$-4\pi \le 2x\le 4\pi $
Now, drawing graph of $\sin x$ from $-4\pi $ to \[4\pi \], we get
As we can observe that $y=\sin x$ has values of 1 at $\dfrac{\pi }{2},\dfrac{5\pi }{2},\dfrac{-3\pi }{2},\dfrac{-7\pi }{2}$.
Now, we have the equation $\sin 2x=1$.
Hence,
$2x=\dfrac{-7\pi }{2},\dfrac{-3\pi }{2},\dfrac{\pi }{2}.\dfrac{5\pi }{2}$
Or $x=\dfrac{-7\pi }{4},\dfrac{-3\pi }{4},\dfrac{\pi }{4}.\dfrac{5\pi }{4}$
Note: One can get confusion between $y=\sin x$ and equation $\sin 2x=1$. Graph of $y=\sin x$ is representing the general relation between angles and values which is not related to equation$\sin 2x=1$. One can suppose ‘2x’ as ‘t’ as well for the simplicity, so we will get equation $\sin t=1$. Now, t will lie in $\left[ -4\pi ,4\pi \right]$ as \[t=2x\]; hence find all values of ‘t’ then find ‘x’ by using relation $x=\dfrac{t}{2}$.
Complete step-by-step answer:
Here, it is given that ${{\log }_{0.5}}\sin x=1-{{\log }_{0.5}}\cos x$, and then we need to determine all the values of x lying in$\left[ -2\pi ,2\pi \right]$.
We have
${{\log }_{0.5}}\sin x=1-{{\log }_{0.5}}\cos x\ldots \ldots (1)$
As we know the property of the logarithm function that \[{{\log }_{a}}a=1\] where $a>0$and $a\ne 1$.
Or vice-versa is also true. It means we can replace ‘1’ from equation (1) by \[{{\log }_{0.5}}0.5\]for the simplification of the problem.
Hence, equation (1) can be written as
${{\log }_{0.5}}\sin x={{\log }_{0.5}}0.5-{{\log }_{0.5}}\cos x$
We can use property of logarithm ${{\log }_{c}}a-{{\log }_{c}}b={{\log }_{c}}\left( \dfrac{a}{b} \right)$, with the above equation and get
${{\log }_{0.5}}\sin x={{\log }_{0.5}}\left( \dfrac{0.5}{\cos x} \right)\ldots \ldots (2)$
As we know that ‘a’ should be equal to ‘b’ if ${{\log }_{c}}a={{\log }_{c}}b$.
Hence, using the above property with equation (2), we get
$\dfrac{\sin x}{1}=\dfrac{0.5}{\cos x}$
On cross-multiplying, we get
$\sin x\cos x=\dfrac{1}{2}$or $2\sin x\cos x=1\ldots \ldots (3)$
As we know the trigonometric identity of $\sin 2x$as $\sin 2x=2\sin x\cos x$or vice-versa.
Hence, equation (3) can be given as
$\sin 2x=1\ldots \ldots (4)$
Now, we have to find ‘x’ in the interval$\left[ -2\pi ,2\pi \right]$.
So we have $-2\pi \le x\le 2\pi $
Multiplying by ‘2’ on each side we get
$-4\pi \le 2x\le 4\pi $
Now, drawing graph of $\sin x$ from $-4\pi $ to \[4\pi \], we get
As we can observe that $y=\sin x$ has values of 1 at $\dfrac{\pi }{2},\dfrac{5\pi }{2},\dfrac{-3\pi }{2},\dfrac{-7\pi }{2}$.
Now, we have the equation $\sin 2x=1$.
Hence,
$2x=\dfrac{-7\pi }{2},\dfrac{-3\pi }{2},\dfrac{\pi }{2}.\dfrac{5\pi }{2}$
Or $x=\dfrac{-7\pi }{4},\dfrac{-3\pi }{4},\dfrac{\pi }{4}.\dfrac{5\pi }{4}$
Note: One can get confusion between $y=\sin x$ and equation $\sin 2x=1$. Graph of $y=\sin x$ is representing the general relation between angles and values which is not related to equation$\sin 2x=1$. One can suppose ‘2x’ as ‘t’ as well for the simplicity, so we will get equation $\sin t=1$. Now, t will lie in $\left[ -4\pi ,4\pi \right]$ as \[t=2x\]; hence find all values of ‘t’ then find ‘x’ by using relation $x=\dfrac{t}{2}$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE