Find out the sum of the series
$
\dfrac{1}{{1 \times 2}}{}^{25}{C_0} + \dfrac{1}{{2 \times 3}}{}^{25}{C_1} + \dfrac{1}{{3 \times 4}}{}^{25}{C_2} + ............ + \dfrac{1}{{26 \times 27}}{}^{25}{C_{25}} \\
{\text{a}}{\text{. }}\dfrac{{{2^{27}} - 1}}{{26 \times 27}} \\
{\text{b}}{\text{. }}\dfrac{{{2^{27}} - 28}}{{26 \times 27}} \\
{\text{c}}{\text{. }}\dfrac{1}{2}\left( {\dfrac{{{2^{26}} - 1}}{{26 \times 27}}} \right) \\
{\text{d}}{\text{. }}\dfrac{{{2^{26}} - 1}}{{52}} \\
$
Answer
Verified
508.2k+ views
Hint: - Use${\left( {1 + x} \right)^{25}} = {}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}$, then apply integration on both sides with limit 0 to $x$
According to Binomial Theorem the expansion of ${\left( {1 + x} \right)^{25}}$is
${\left( {1 + x} \right)^{25}} = {}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}...........\left( 1 \right)$
Integrate equation 1 w.r.t.$x$With limit 0 to $x$
$\int\limits_0^x {{{\left( {1 + x} \right)}^{25}}dx} = \int\limits_0^x {\left( {{}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}} \right)dx} $
Let, $\left( {1 + x} \right) = t...................\left( 2 \right)$
So when
$
x = 0 \Rightarrow t = 1 + 0 = 1 \\
x = x \Rightarrow t = 1 + x \\
$
Now, differentiate equation 2 w.r.t.$x$
$ \Rightarrow 0 + dx = dt \Rightarrow dx = dt$
Substitute these value in equation 1
\[\int\limits_1^{1 + x} {{t^{25}}dt} = \int\limits_0^x {\left( {{}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}} \right)dx} \]
Now integrate this equation as you know $\int {{t^n}dt = \left[ {\dfrac{{{t^{n + 1}}}}{{n + 1}}} \right]} $
\[ \Rightarrow \left[ {\dfrac{{{t^{26}}}}{{26}}} \right]_1^{1 + x} = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]_o^x\]
Now apply integrating limit
\[
\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right] = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}} - 0 - 0 - 0} \right] \\
\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right] = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]..............\left( 3 \right) \\
\]
Now again integrate equation 3 w.r.t.$x$From limit 0 to 1.
\[\int\limits_0^1 {\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right]dx} = \int\limits_0^1 {\left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]} dx\]
Let, $\left( {1 + x} \right) = t...................\left( 4 \right)$
So when
$
x = 0 \Rightarrow t = 1 + 0 = 1 \\
x = 1 \Rightarrow t = 1 + 1 = 2 \\
$
Now, differentiate equation 4 w.r.t.$x$
$ \Rightarrow 0 + dx = dt \Rightarrow dx = dt$
Substitute these value in equation 3
\[\int\limits_1^2 {\left[ {\dfrac{{{t^{26}}}}{{26}} - \dfrac{1}{{26}}} \right]dt} = \int\limits_0^1 {\left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]} dx\]
Now integrate this equation as you know $\int {{t^n}dt = \left[ {\dfrac{{{t^{n + 1}}}}{{n + 1}}} \right]} $
$\left[ {\dfrac{{{t^{27}}}}{{27 \times 26}} - \dfrac{1}{{26}}} \right]_1^2 = \left[ {{}^{25}{C_0}\dfrac{{{x^2}}}{2} + {}^{25}{C_1}\dfrac{{{x^3}}}{{2 \times 3}} + {}^{25}{C_2}\dfrac{{{x^4}}}{{3 \times 4}} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{27}}}}{{26 \times 27}}} \right]_0^1$
Now apply integrating limit
$
\left[ {\dfrac{{{2^{27}}}}{{27 \times 26}} - \dfrac{1}{{26}} - \left( {\dfrac{{{1^{27}}}}{{27 \times 26}}} \right)} \right] = \left[ {{}^{25}{C_0}\dfrac{1}{2} + {}^{25}{C_1}\dfrac{1}{{2 \times 3}} + {}^{25}{C_2}\dfrac{1}{{3 \times 4}} + ................. + {}^{25}{C_{25}}\dfrac{1}{{26 \times 27}} - 0 - 0 - 0} \right] \\
\Rightarrow \left[ {\dfrac{{{2^{27}} - 28}}{{27 \times 26}}} \right] = \dfrac{1}{{1 \times 2}}{}^{25}{C_0} + \dfrac{1}{{2 \times 3}}{}^{25}{C_1} + \dfrac{1}{{3 \times 4}}{}^{25}{C_2} + ............ + \dfrac{1}{{26 \times 27}}{}^{25}{C_{25}} \\
$
Hence, option (b) is correct.
Note: - Whenever we face such type of problem the key concept we have to remember is that always remember the Binomial expansion of${\left( {1 + x} \right)^n}$, then integrate the expansion w.r.t.$x$ With limit 0 to x, then again integrate w.r.t.$x$with limit 0 to 1, we will get the required answer.
According to Binomial Theorem the expansion of ${\left( {1 + x} \right)^{25}}$is
${\left( {1 + x} \right)^{25}} = {}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}...........\left( 1 \right)$
Integrate equation 1 w.r.t.$x$With limit 0 to $x$
$\int\limits_0^x {{{\left( {1 + x} \right)}^{25}}dx} = \int\limits_0^x {\left( {{}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}} \right)dx} $
Let, $\left( {1 + x} \right) = t...................\left( 2 \right)$
So when
$
x = 0 \Rightarrow t = 1 + 0 = 1 \\
x = x \Rightarrow t = 1 + x \\
$
Now, differentiate equation 2 w.r.t.$x$
$ \Rightarrow 0 + dx = dt \Rightarrow dx = dt$
Substitute these value in equation 1
\[\int\limits_1^{1 + x} {{t^{25}}dt} = \int\limits_0^x {\left( {{}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}} \right)dx} \]
Now integrate this equation as you know $\int {{t^n}dt = \left[ {\dfrac{{{t^{n + 1}}}}{{n + 1}}} \right]} $
\[ \Rightarrow \left[ {\dfrac{{{t^{26}}}}{{26}}} \right]_1^{1 + x} = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]_o^x\]
Now apply integrating limit
\[
\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right] = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}} - 0 - 0 - 0} \right] \\
\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right] = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]..............\left( 3 \right) \\
\]
Now again integrate equation 3 w.r.t.$x$From limit 0 to 1.
\[\int\limits_0^1 {\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right]dx} = \int\limits_0^1 {\left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]} dx\]
Let, $\left( {1 + x} \right) = t...................\left( 4 \right)$
So when
$
x = 0 \Rightarrow t = 1 + 0 = 1 \\
x = 1 \Rightarrow t = 1 + 1 = 2 \\
$
Now, differentiate equation 4 w.r.t.$x$
$ \Rightarrow 0 + dx = dt \Rightarrow dx = dt$
Substitute these value in equation 3
\[\int\limits_1^2 {\left[ {\dfrac{{{t^{26}}}}{{26}} - \dfrac{1}{{26}}} \right]dt} = \int\limits_0^1 {\left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]} dx\]
Now integrate this equation as you know $\int {{t^n}dt = \left[ {\dfrac{{{t^{n + 1}}}}{{n + 1}}} \right]} $
$\left[ {\dfrac{{{t^{27}}}}{{27 \times 26}} - \dfrac{1}{{26}}} \right]_1^2 = \left[ {{}^{25}{C_0}\dfrac{{{x^2}}}{2} + {}^{25}{C_1}\dfrac{{{x^3}}}{{2 \times 3}} + {}^{25}{C_2}\dfrac{{{x^4}}}{{3 \times 4}} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{27}}}}{{26 \times 27}}} \right]_0^1$
Now apply integrating limit
$
\left[ {\dfrac{{{2^{27}}}}{{27 \times 26}} - \dfrac{1}{{26}} - \left( {\dfrac{{{1^{27}}}}{{27 \times 26}}} \right)} \right] = \left[ {{}^{25}{C_0}\dfrac{1}{2} + {}^{25}{C_1}\dfrac{1}{{2 \times 3}} + {}^{25}{C_2}\dfrac{1}{{3 \times 4}} + ................. + {}^{25}{C_{25}}\dfrac{1}{{26 \times 27}} - 0 - 0 - 0} \right] \\
\Rightarrow \left[ {\dfrac{{{2^{27}} - 28}}{{27 \times 26}}} \right] = \dfrac{1}{{1 \times 2}}{}^{25}{C_0} + \dfrac{1}{{2 \times 3}}{}^{25}{C_1} + \dfrac{1}{{3 \times 4}}{}^{25}{C_2} + ............ + \dfrac{1}{{26 \times 27}}{}^{25}{C_{25}} \\
$
Hence, option (b) is correct.
Note: - Whenever we face such type of problem the key concept we have to remember is that always remember the Binomial expansion of${\left( {1 + x} \right)^n}$, then integrate the expansion w.r.t.$x$ With limit 0 to x, then again integrate w.r.t.$x$with limit 0 to 1, we will get the required answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
State the laws of reflection of light