Answer
Verified
430.5k+ views
Hint: We are given 3 parametric equation that define our function as $x=1+10.\sqrt{t},y={{t}^{5}}-t,\text{ and }z={{t}^{5}}+t;$at point $\left( 11,0,2 \right)$ . We are asked to find parametric equation for the tangent line, we first find the parametric value of ‘t’ which will correspond to the point $\left( 11,0,2 \right)$ , then we will differentiate our function then find the value of that derivate at the parametric value of ‘t’, then we will get each required value and add the given point with the point obtained by derivative of our function along with ‘t’.
Complete step by step answer:
We are given 3 parametric equation of our function as –
$x=1+10.\sqrt{t},y={{t}^{5}}-t,\text{ and }z={{t}^{5}}+t.$
We have to find the parametric equation of the tangent line at the point $\left( 11,0,2 \right)$ .
Now solve this we will first find the value of the parametric variable ‘t’ corresponding to the point $\left( 11,0,2 \right)$ , to do so we can compare any of the three given parametric equations.
So, in $\left( 11,0,2 \right)$ we have $x=11,y=0\text{ and }z=2$
So, we will use $y={{t}^{5}}-t$ to find the value of ‘t’,
So, $0={{t}^{5}}-t$
By simplifying, we get –
$0=t\left( {{t}^{4}}-1 \right)$
So, we get –
Either $t=0$ or $t=1$
If $t=0$ then $z={{t}^{5}}+t$ never satisfy a given point as $z=2$ and $t=0$ will give $z=0$ .
So, the correct value of t’ is 1.
So we get –
$t=1$
Now we will differentiate our function as given our function is comprise if $x=1+10.\sqrt{t},y={{t}^{5}}-t,\text{ and }z={{t}^{5}}+t.$
So we differentiate these and find its value at $t=1$ .
So, $\dfrac{dx}{dt}=\dfrac{10}{2\sqrt{t}}$
$at\text{ }t=1$
$\dfrac{dx}{dt}=5$ ……………………. (1)
Or $x'\left( 4 \right)=5$
$\dfrac{dy}{dt}=5{{t}^{4}}-1$
$at\text{ }t=1$
$\dfrac{dy}{dt}=5-1=4$ or $4'\left( t \right)=4$ …………………………………… (2)
And lastly
$\dfrac{dz}{dt}=5{{t}^{4}}+1$
$at\text{ }t=1$
$\dfrac{dz}{dt}=5+1=6$ or $z'\left( 1 \right)=b$ ……………………………………. (3)
Now, we have got everything we need.
Now we will find our parametric equation of the tangent line.
We know given point $p\left( {{x}_{p}},{{y}_{p}},{{z}_{p}} \right)$ and direction $v\left( a,b,c \right)$ the line pass from that point with this director is
$\begin{align}
& x=xp+at \\
& y=yp+bt \\
& z=zp+ct \\
\end{align}$
We have point $p\ne \left( 11,0,2 \right)$ and direction vector as $\left( 5,4,6 \right)$ (using 1, 2 and 3)
So, using these above, we get –
$\begin{align}
& x=11+5t \\
& y=0+4t=4t \\
& z=2+6t \\
\end{align}$
This is our required parametric form of the tangent.
Note: Remember that if the directions $\left( x',y',z' \right)$ we found has term as common. So can simplify first and then use them in the tangent line to form the parametric equation.
So, it say $\left( x',y',z' \right)=\left( 2,4,6 \right)$ then –
$\begin{align}
& x=1+2t \\
& y=2+4t \\
& z=3+6t \\
\end{align}$ is same as $\begin{align}
& x=1+t \\
& y=2+2t \\
& z=3+3t \\
\end{align}$
It was common, so it was cancelled and the equation still behaves the same.
Complete step by step answer:
We are given 3 parametric equation of our function as –
$x=1+10.\sqrt{t},y={{t}^{5}}-t,\text{ and }z={{t}^{5}}+t.$
We have to find the parametric equation of the tangent line at the point $\left( 11,0,2 \right)$ .
Now solve this we will first find the value of the parametric variable ‘t’ corresponding to the point $\left( 11,0,2 \right)$ , to do so we can compare any of the three given parametric equations.
So, in $\left( 11,0,2 \right)$ we have $x=11,y=0\text{ and }z=2$
So, we will use $y={{t}^{5}}-t$ to find the value of ‘t’,
So, $0={{t}^{5}}-t$
By simplifying, we get –
$0=t\left( {{t}^{4}}-1 \right)$
So, we get –
Either $t=0$ or $t=1$
If $t=0$ then $z={{t}^{5}}+t$ never satisfy a given point as $z=2$ and $t=0$ will give $z=0$ .
So, the correct value of t’ is 1.
So we get –
$t=1$
Now we will differentiate our function as given our function is comprise if $x=1+10.\sqrt{t},y={{t}^{5}}-t,\text{ and }z={{t}^{5}}+t.$
So we differentiate these and find its value at $t=1$ .
So, $\dfrac{dx}{dt}=\dfrac{10}{2\sqrt{t}}$
$at\text{ }t=1$
$\dfrac{dx}{dt}=5$ ……………………. (1)
Or $x'\left( 4 \right)=5$
$\dfrac{dy}{dt}=5{{t}^{4}}-1$
$at\text{ }t=1$
$\dfrac{dy}{dt}=5-1=4$ or $4'\left( t \right)=4$ …………………………………… (2)
And lastly
$\dfrac{dz}{dt}=5{{t}^{4}}+1$
$at\text{ }t=1$
$\dfrac{dz}{dt}=5+1=6$ or $z'\left( 1 \right)=b$ ……………………………………. (3)
Now, we have got everything we need.
Now we will find our parametric equation of the tangent line.
We know given point $p\left( {{x}_{p}},{{y}_{p}},{{z}_{p}} \right)$ and direction $v\left( a,b,c \right)$ the line pass from that point with this director is
$\begin{align}
& x=xp+at \\
& y=yp+bt \\
& z=zp+ct \\
\end{align}$
We have point $p\ne \left( 11,0,2 \right)$ and direction vector as $\left( 5,4,6 \right)$ (using 1, 2 and 3)
So, using these above, we get –
$\begin{align}
& x=11+5t \\
& y=0+4t=4t \\
& z=2+6t \\
\end{align}$
This is our required parametric form of the tangent.
Note: Remember that if the directions $\left( x',y',z' \right)$ we found has term as common. So can simplify first and then use them in the tangent line to form the parametric equation.
So, it say $\left( x',y',z' \right)=\left( 2,4,6 \right)$ then –
$\begin{align}
& x=1+2t \\
& y=2+4t \\
& z=3+6t \\
\end{align}$ is same as $\begin{align}
& x=1+t \\
& y=2+2t \\
& z=3+3t \\
\end{align}$
It was common, so it was cancelled and the equation still behaves the same.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE