
Find sum up to n terms of the series 1+5+12+22+35....
Answer
592.5k+ views
Hint: Note that, the differences of the terms of the given sequence are in arithmetic progression. Find the closed expression for the nth term of the sequence first. Then calculate the sum up to the nth term
${S_n} = \sum\limits_{i = 1}^n {{a_i}} $
Complete step-by-step answer:
The terms of the given sequence are
$
{a_1} = 1 \\
{a_2} = 5 \\
{a_3} = 12 \\
\vdots \\
$
We see their differences are in arithmetic progression with first term 4 and common difference 3, i.e.
$
{\text{ }}{{{a}}_2} - {a_1} = 4 \\
{}_ + {{{a}}_3} - {{{a}}_2} = 7 \\
{}_ + {{{a}}_4} - {{{a}}_3} = 10 \\
\vdots \\
\vdots \\
{}_ + {a_n} - {{{a}}_{n - 1}} = 3n - 2 \\
$
Adding all the equations, we get
$
{a_n} - {a_1} = 4 + 7 + 10 + ...... + (3n - 2) \\
As{\text{ }}4 + 7 + 10 + ...... + (3n - 2){\text{ }}are{\text{ }}in{\text{ }}AP \\
where{\text{ }}a = 4,{\text{ }}d = 3{\text{ }}and{\text{ }}n' = n - 1 \\
So{\text{ }}by{\text{ }} using {\text{ }} the {\text{ }} formula {\text{ }}of{\text{ }}sum{\text{ }}of{\text{ }}an{\text{ }}AP{\text{ }}we{\text{ }}get, \\
{a_n} - 1 = \dfrac{{(n - 1)(2(4) + (n - 1 - 1)3)}}{2} \\
On{\text{ }}simplifying{\text{ }}we{\text{ }}get, \\
\Rightarrow {a_n} - 1 = \dfrac{{(n - 1)(4 + 3n - 2)}}{2} = \dfrac{{(n - 1)(3n + 2)}}{2} \\
\Rightarrow {a_n} = \dfrac{{3{n^2} + 2n - 3n - 2 + 2}}{2} = \dfrac{{3{n^2} - n}}{2} \\
$
Therefore sum up to the nth term of the given sequence is
$
{S_n} = \sum\limits_{i = 1}^n {{a_i}} = \sum\limits_{i = 1}^n {\dfrac{{3{i^2} - i}}{2}} \\
\Rightarrow {S_n} = \dfrac{3}{2}\sum {{i^2}} - \dfrac{1}{2}\sum i \\
Now{\text{ }}we{\text{ }}use{\text{ }}the{\text{ }}fact{\text{ }}that{\text{ }}\sum {{i^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}and{\text{ }}\sum i = \dfrac{{n(n + 1)}}{2}, \\
\Rightarrow {S_n} = \dfrac{3}{2}*\dfrac{{n(n + 1)(2n + 1)}}{6} - \dfrac{1}{2}*\dfrac{{n(n + 1)}}{2} \\
\Rightarrow {S_n} = \dfrac{{n(n + 1)(2n + 1)}}{4} - \dfrac{{n(n + 1)}}{4} \\
On{\text{ }}simplifying{\text{ }}further{\text{ }}we{\text{ }}get, \\
\Rightarrow {S_n} = \dfrac{{n(n + 1)}}{4}\left[ {2n + 1 - 1} \right] = \dfrac{{{n^2}(n + 1)}}{2} \\
$
Hence, sum up to n terms of the series 1+5+12+22+35.... is given by $\dfrac{{{n^2}(n + 1)}}{2}$
Note: Apparently, the terms of the given sequence have no pattern. Now, note that the differences of the terms of the given sequence are in arithmetic progression. Using this, find the closed expression for the nth term of the sequence first. Then calculate the sum up to nth term
${S_n} = \sum\limits_{i = 1}^n {{a_i}} $
${S_n} = \sum\limits_{i = 1}^n {{a_i}} $
Complete step-by-step answer:
The terms of the given sequence are
$
{a_1} = 1 \\
{a_2} = 5 \\
{a_3} = 12 \\
\vdots \\
$
We see their differences are in arithmetic progression with first term 4 and common difference 3, i.e.
$
{\text{ }}{{{a}}_2} - {a_1} = 4 \\
{}_ + {{{a}}_3} - {{{a}}_2} = 7 \\
{}_ + {{{a}}_4} - {{{a}}_3} = 10 \\
\vdots \\
\vdots \\
{}_ + {a_n} - {{{a}}_{n - 1}} = 3n - 2 \\
$
Adding all the equations, we get
$
{a_n} - {a_1} = 4 + 7 + 10 + ...... + (3n - 2) \\
As{\text{ }}4 + 7 + 10 + ...... + (3n - 2){\text{ }}are{\text{ }}in{\text{ }}AP \\
where{\text{ }}a = 4,{\text{ }}d = 3{\text{ }}and{\text{ }}n' = n - 1 \\
So{\text{ }}by{\text{ }} using {\text{ }} the {\text{ }} formula {\text{ }}of{\text{ }}sum{\text{ }}of{\text{ }}an{\text{ }}AP{\text{ }}we{\text{ }}get, \\
{a_n} - 1 = \dfrac{{(n - 1)(2(4) + (n - 1 - 1)3)}}{2} \\
On{\text{ }}simplifying{\text{ }}we{\text{ }}get, \\
\Rightarrow {a_n} - 1 = \dfrac{{(n - 1)(4 + 3n - 2)}}{2} = \dfrac{{(n - 1)(3n + 2)}}{2} \\
\Rightarrow {a_n} = \dfrac{{3{n^2} + 2n - 3n - 2 + 2}}{2} = \dfrac{{3{n^2} - n}}{2} \\
$
Therefore sum up to the nth term of the given sequence is
$
{S_n} = \sum\limits_{i = 1}^n {{a_i}} = \sum\limits_{i = 1}^n {\dfrac{{3{i^2} - i}}{2}} \\
\Rightarrow {S_n} = \dfrac{3}{2}\sum {{i^2}} - \dfrac{1}{2}\sum i \\
Now{\text{ }}we{\text{ }}use{\text{ }}the{\text{ }}fact{\text{ }}that{\text{ }}\sum {{i^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}and{\text{ }}\sum i = \dfrac{{n(n + 1)}}{2}, \\
\Rightarrow {S_n} = \dfrac{3}{2}*\dfrac{{n(n + 1)(2n + 1)}}{6} - \dfrac{1}{2}*\dfrac{{n(n + 1)}}{2} \\
\Rightarrow {S_n} = \dfrac{{n(n + 1)(2n + 1)}}{4} - \dfrac{{n(n + 1)}}{4} \\
On{\text{ }}simplifying{\text{ }}further{\text{ }}we{\text{ }}get, \\
\Rightarrow {S_n} = \dfrac{{n(n + 1)}}{4}\left[ {2n + 1 - 1} \right] = \dfrac{{{n^2}(n + 1)}}{2} \\
$
Hence, sum up to n terms of the series 1+5+12+22+35.... is given by $\dfrac{{{n^2}(n + 1)}}{2}$
Note: Apparently, the terms of the given sequence have no pattern. Now, note that the differences of the terms of the given sequence are in arithmetic progression. Using this, find the closed expression for the nth term of the sequence first. Then calculate the sum up to nth term
${S_n} = \sum\limits_{i = 1}^n {{a_i}} $
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

