Answer
Verified
470.4k+ views
Hint: Note that, the differences of the terms of the given sequence are in arithmetic progression. Find the closed expression for the nth term of the sequence first. Then calculate the sum up to the nth term
${S_n} = \sum\limits_{i = 1}^n {{a_i}} $
Complete step-by-step answer:
The terms of the given sequence are
$
{a_1} = 1 \\
{a_2} = 5 \\
{a_3} = 12 \\
\vdots \\
$
We see their differences are in arithmetic progression with first term 4 and common difference 3, i.e.
$
{\text{ }}{{{a}}_2} - {a_1} = 4 \\
{}_ + {{{a}}_3} - {{{a}}_2} = 7 \\
{}_ + {{{a}}_4} - {{{a}}_3} = 10 \\
\vdots \\
\vdots \\
{}_ + {a_n} - {{{a}}_{n - 1}} = 3n - 2 \\
$
Adding all the equations, we get
$
{a_n} - {a_1} = 4 + 7 + 10 + ...... + (3n - 2) \\
As{\text{ }}4 + 7 + 10 + ...... + (3n - 2){\text{ }}are{\text{ }}in{\text{ }}AP \\
where{\text{ }}a = 4,{\text{ }}d = 3{\text{ }}and{\text{ }}n' = n - 1 \\
So{\text{ }}by{\text{ }} using {\text{ }} the {\text{ }} formula {\text{ }}of{\text{ }}sum{\text{ }}of{\text{ }}an{\text{ }}AP{\text{ }}we{\text{ }}get, \\
{a_n} - 1 = \dfrac{{(n - 1)(2(4) + (n - 1 - 1)3)}}{2} \\
On{\text{ }}simplifying{\text{ }}we{\text{ }}get, \\
\Rightarrow {a_n} - 1 = \dfrac{{(n - 1)(4 + 3n - 2)}}{2} = \dfrac{{(n - 1)(3n + 2)}}{2} \\
\Rightarrow {a_n} = \dfrac{{3{n^2} + 2n - 3n - 2 + 2}}{2} = \dfrac{{3{n^2} - n}}{2} \\
$
Therefore sum up to the nth term of the given sequence is
$
{S_n} = \sum\limits_{i = 1}^n {{a_i}} = \sum\limits_{i = 1}^n {\dfrac{{3{i^2} - i}}{2}} \\
\Rightarrow {S_n} = \dfrac{3}{2}\sum {{i^2}} - \dfrac{1}{2}\sum i \\
Now{\text{ }}we{\text{ }}use{\text{ }}the{\text{ }}fact{\text{ }}that{\text{ }}\sum {{i^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}and{\text{ }}\sum i = \dfrac{{n(n + 1)}}{2}, \\
\Rightarrow {S_n} = \dfrac{3}{2}*\dfrac{{n(n + 1)(2n + 1)}}{6} - \dfrac{1}{2}*\dfrac{{n(n + 1)}}{2} \\
\Rightarrow {S_n} = \dfrac{{n(n + 1)(2n + 1)}}{4} - \dfrac{{n(n + 1)}}{4} \\
On{\text{ }}simplifying{\text{ }}further{\text{ }}we{\text{ }}get, \\
\Rightarrow {S_n} = \dfrac{{n(n + 1)}}{4}\left[ {2n + 1 - 1} \right] = \dfrac{{{n^2}(n + 1)}}{2} \\
$
Hence, sum up to n terms of the series 1+5+12+22+35.... is given by $\dfrac{{{n^2}(n + 1)}}{2}$
Note: Apparently, the terms of the given sequence have no pattern. Now, note that the differences of the terms of the given sequence are in arithmetic progression. Using this, find the closed expression for the nth term of the sequence first. Then calculate the sum up to nth term
${S_n} = \sum\limits_{i = 1}^n {{a_i}} $
${S_n} = \sum\limits_{i = 1}^n {{a_i}} $
Complete step-by-step answer:
The terms of the given sequence are
$
{a_1} = 1 \\
{a_2} = 5 \\
{a_3} = 12 \\
\vdots \\
$
We see their differences are in arithmetic progression with first term 4 and common difference 3, i.e.
$
{\text{ }}{{{a}}_2} - {a_1} = 4 \\
{}_ + {{{a}}_3} - {{{a}}_2} = 7 \\
{}_ + {{{a}}_4} - {{{a}}_3} = 10 \\
\vdots \\
\vdots \\
{}_ + {a_n} - {{{a}}_{n - 1}} = 3n - 2 \\
$
Adding all the equations, we get
$
{a_n} - {a_1} = 4 + 7 + 10 + ...... + (3n - 2) \\
As{\text{ }}4 + 7 + 10 + ...... + (3n - 2){\text{ }}are{\text{ }}in{\text{ }}AP \\
where{\text{ }}a = 4,{\text{ }}d = 3{\text{ }}and{\text{ }}n' = n - 1 \\
So{\text{ }}by{\text{ }} using {\text{ }} the {\text{ }} formula {\text{ }}of{\text{ }}sum{\text{ }}of{\text{ }}an{\text{ }}AP{\text{ }}we{\text{ }}get, \\
{a_n} - 1 = \dfrac{{(n - 1)(2(4) + (n - 1 - 1)3)}}{2} \\
On{\text{ }}simplifying{\text{ }}we{\text{ }}get, \\
\Rightarrow {a_n} - 1 = \dfrac{{(n - 1)(4 + 3n - 2)}}{2} = \dfrac{{(n - 1)(3n + 2)}}{2} \\
\Rightarrow {a_n} = \dfrac{{3{n^2} + 2n - 3n - 2 + 2}}{2} = \dfrac{{3{n^2} - n}}{2} \\
$
Therefore sum up to the nth term of the given sequence is
$
{S_n} = \sum\limits_{i = 1}^n {{a_i}} = \sum\limits_{i = 1}^n {\dfrac{{3{i^2} - i}}{2}} \\
\Rightarrow {S_n} = \dfrac{3}{2}\sum {{i^2}} - \dfrac{1}{2}\sum i \\
Now{\text{ }}we{\text{ }}use{\text{ }}the{\text{ }}fact{\text{ }}that{\text{ }}\sum {{i^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}and{\text{ }}\sum i = \dfrac{{n(n + 1)}}{2}, \\
\Rightarrow {S_n} = \dfrac{3}{2}*\dfrac{{n(n + 1)(2n + 1)}}{6} - \dfrac{1}{2}*\dfrac{{n(n + 1)}}{2} \\
\Rightarrow {S_n} = \dfrac{{n(n + 1)(2n + 1)}}{4} - \dfrac{{n(n + 1)}}{4} \\
On{\text{ }}simplifying{\text{ }}further{\text{ }}we{\text{ }}get, \\
\Rightarrow {S_n} = \dfrac{{n(n + 1)}}{4}\left[ {2n + 1 - 1} \right] = \dfrac{{{n^2}(n + 1)}}{2} \\
$
Hence, sum up to n terms of the series 1+5+12+22+35.... is given by $\dfrac{{{n^2}(n + 1)}}{2}$
Note: Apparently, the terms of the given sequence have no pattern. Now, note that the differences of the terms of the given sequence are in arithmetic progression. Using this, find the closed expression for the nth term of the sequence first. Then calculate the sum up to nth term
${S_n} = \sum\limits_{i = 1}^n {{a_i}} $
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE