
How do you find the 6th term in the geometric sequence \[25,75,225,675,...\]?
Answer
534.6k+ views
Hint: The general formula for a nth term of a geometric sequence is \[a{{r}^{n-1}}\]. Here, a is the first term of the geometric series, and r is the common ratio of the series. We can find the common ratio by taking the ratio of a term with its previous term. By substituting the values for a, r and n we can find the desired term that we want.
Complete step by step solution:
We are given the infinite geometric series \[25,75,225,675,...\]. Here, the first term is 25, so \[a=25\]. To find the common ratio, we need to take a ratio of a term with its previous term. Hence, we get the ratio as
\[r=\dfrac{75}{25}\], cancelling out the common factors, we get \[r=3\].
Now, we have the first term and the common ratio. Substituting their values in the formula for the nth term of an geometric series. We get
\[a{{r}^{n-1}}\]
As we want the 6th term to find, substituting \[n=6,r=3\And a=25\] in the above equation, we get \[\left( 25 \right){{\left( 3 \right)}^{6-1}}\]. Simplifying this expression, we get 6075.
Hence, the 6th term is 6075.
Note: For a general geometric series the formula for the sum of n terms is, \[\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}\] for \[\left| r \right|<1\], and \[\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}\] for \[\left| r \right|>1\]. We can find the sum of infinite series only if the absolute value of the common ratio is less than one, that is \[\left| r \right|<1\].
We can derive the formula for infinite geometric series as,
\[\displaystyle \lim_{n \to \infty }\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}\]
As \[\left| r \right|<1\], we can say that $r^{n}\to0$. Using this in the above limit, we get the summation formula as
\[\displaystyle \lim_{n \to \infty }\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}=\dfrac{a\left( 1-0 \right)}{1-r}=\dfrac{a}{1-r}\]
Complete step by step solution:
We are given the infinite geometric series \[25,75,225,675,...\]. Here, the first term is 25, so \[a=25\]. To find the common ratio, we need to take a ratio of a term with its previous term. Hence, we get the ratio as
\[r=\dfrac{75}{25}\], cancelling out the common factors, we get \[r=3\].
Now, we have the first term and the common ratio. Substituting their values in the formula for the nth term of an geometric series. We get
\[a{{r}^{n-1}}\]
As we want the 6th term to find, substituting \[n=6,r=3\And a=25\] in the above equation, we get \[\left( 25 \right){{\left( 3 \right)}^{6-1}}\]. Simplifying this expression, we get 6075.
Hence, the 6th term is 6075.
Note: For a general geometric series the formula for the sum of n terms is, \[\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}\] for \[\left| r \right|<1\], and \[\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}\] for \[\left| r \right|>1\]. We can find the sum of infinite series only if the absolute value of the common ratio is less than one, that is \[\left| r \right|<1\].
We can derive the formula for infinite geometric series as,
\[\displaystyle \lim_{n \to \infty }\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}\]
As \[\left| r \right|<1\], we can say that $r^{n}\to0$. Using this in the above limit, we get the summation formula as
\[\displaystyle \lim_{n \to \infty }\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}=\dfrac{a\left( 1-0 \right)}{1-r}=\dfrac{a}{1-r}\]
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

