How do you find the angle between the vectors \[u = cos\left( {\dfrac{\pi }{3}} \right)i +
sin\left( {\dfrac{\pi }{3}} \right)j\;and\;v = cos\left( {\dfrac{{3\pi }}{4}} \right)i + sin\left(
{\dfrac{{3\pi }}{4}} \right)j\]?
Answer
Verified
437.7k+ views
Hint:First of all we need to understand what vectors are . Vectors can be said as physical quantities or objects which have both a magnitude and a direction . If the two vectors are supposed to be $\overrightarrow a $and $\overrightarrow b $. The ‘$\theta $’ is the angle by which the two vectors are separated . Now , to determine that what is the angle between the two vectors we are going to apply the dot product between those two vectors denoted as $\overrightarrow a
.\overrightarrow b $and the dot product is given as $\overrightarrow {a.} \overrightarrow b =
|a||b|\cos \theta $.
Step by step solution :
The angle $\theta $ between two vectors $\overrightarrow u $and $\overrightarrow v $as per the question given is related to the modulus ( or magnitude ) and scalar ( or dot ) product of
$\overrightarrow u $and $\overrightarrow u $by the relationship : $\overrightarrow {u.}
\overrightarrow v = |u||v|\cos \theta $
For the question above , The angle between the two vectors $\overrightarrow u $ and
$\overrightarrow v $ will be $\theta $ .
Calculating and simplifying the vectors ,
First , assigning the trigonometric values as the functions given of cosine and sine .
$\overrightarrow u = cos\left( {\dfrac{\pi }{3}} \right)\mathop i\limits^ \wedge + sin\left(
{\dfrac{\pi }{3}} \right)\mathop j\limits^ \wedge \; = \dfrac{1}{2}\mathop i\limits^ \wedge +
\dfrac{{\sqrt 3 }}{2}\mathop j\limits^ \wedge $------- - 1
$\overrightarrow v = cos\left( {\dfrac{{3\pi }}{4}} \right)\mathop i\limits^ \wedge + sin\left(
{\dfrac{{3\pi }}{4}} \right)\mathop j\limits^ \wedge \; = - \dfrac{{\sqrt 2 }}{2}\mathop i\limits^
\wedge + \dfrac{{\sqrt 2 }}{2}\mathop j\limits^ \wedge $----- - 2
Now we will calculate the modulus of $|\overrightarrow u |$= $\left| {\dfrac{1}{2}\mathop
i\limits^ \wedge + \left. {\dfrac{{\sqrt 3 }}{2}\mathop j\limits^ \wedge } \right|} \right.$=
\[\sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}} \]= $\sqrt
{\dfrac{1}{4} + \dfrac{3}{4}} $=$\sqrt 1 $=$1$
$|\overrightarrow v |$= $\left| { - \dfrac{{\sqrt 2 }}{2}\mathop i\limits^ \wedge + \left.
{\dfrac{{\sqrt 2 }}{2}\mathop j\limits^ \wedge } \right|} \right.$= \[\sqrt {{{\left( { - \dfrac{{\sqrt
2 }}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 2 }}{2}} \right)}^2}} \]= $\sqrt {\dfrac{2}{4} +
\dfrac{2}{4}} $=$\sqrt 1 $=$1$
And now we perform the scalar product :
$\overrightarrow {u.} \overrightarrow v $ = $\left( {\dfrac{1}{2}\mathop i\limits^ \wedge +
\dfrac{{\sqrt 3 }}{2}\mathop j\limits^ \wedge } \right)$. $\left( { - \dfrac{{\sqrt 2 }}{2}\mathop
i\limits^ \wedge + \dfrac{{\sqrt 2 }}{2}\mathop j\limits^ \wedge } \right)$
= $\left( {\dfrac{1}{2}} \right)\left( { - \dfrac{{\sqrt 2 }}{2}} \right) + \left( {\dfrac{{\sqrt 3 }}{2}}
\right)\left( {\dfrac{{\sqrt 2 }}{2}} \right)$
= $
- \dfrac{{\sqrt 2 }}{4} + \dfrac{{\sqrt 2 \sqrt 3 }}{4} \\
\\
$
=$\dfrac{{\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{4}$
Now applying the formula $\overrightarrow {u.} \overrightarrow v = |u||v|\cos \theta $ we get :
We will substitute the values after getting each values of L . H . S . and R . H . S . we calculated before in the above formula to get the angle .
$\dfrac{{\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{4}$= $1.1.\cos \theta $
$\cos \theta $= $\dfrac{{\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{4}$
$\theta = \dfrac{{7\pi }}{{12}}$
Therefore the angle between the two vectors $\overrightarrow u $ and $\overrightarrow v $ is
$\theta = \dfrac{{7\pi }}{{12}}$ .
Note : The vectors are the objects ( physical quantity ) in real life that are having magnitude and direction . For instance , Force and Velocity .
The modulus actually means $\left| {\overrightarrow r } \right|$= $\sqrt {{a^2} + {b^2}} $
Always remember by scalar product we refer to dot product .
For above question we calculated the L . H . S . and R . H . S . independently using the formula $\overrightarrow {a.} \overrightarrow b = |a||b|\cos \theta $. And then combined and substituted the calculated values .
.\overrightarrow b $and the dot product is given as $\overrightarrow {a.} \overrightarrow b =
|a||b|\cos \theta $.
Step by step solution :
The angle $\theta $ between two vectors $\overrightarrow u $and $\overrightarrow v $as per the question given is related to the modulus ( or magnitude ) and scalar ( or dot ) product of
$\overrightarrow u $and $\overrightarrow u $by the relationship : $\overrightarrow {u.}
\overrightarrow v = |u||v|\cos \theta $
For the question above , The angle between the two vectors $\overrightarrow u $ and
$\overrightarrow v $ will be $\theta $ .
Calculating and simplifying the vectors ,
First , assigning the trigonometric values as the functions given of cosine and sine .
$\overrightarrow u = cos\left( {\dfrac{\pi }{3}} \right)\mathop i\limits^ \wedge + sin\left(
{\dfrac{\pi }{3}} \right)\mathop j\limits^ \wedge \; = \dfrac{1}{2}\mathop i\limits^ \wedge +
\dfrac{{\sqrt 3 }}{2}\mathop j\limits^ \wedge $------- - 1
$\overrightarrow v = cos\left( {\dfrac{{3\pi }}{4}} \right)\mathop i\limits^ \wedge + sin\left(
{\dfrac{{3\pi }}{4}} \right)\mathop j\limits^ \wedge \; = - \dfrac{{\sqrt 2 }}{2}\mathop i\limits^
\wedge + \dfrac{{\sqrt 2 }}{2}\mathop j\limits^ \wedge $----- - 2
Now we will calculate the modulus of $|\overrightarrow u |$= $\left| {\dfrac{1}{2}\mathop
i\limits^ \wedge + \left. {\dfrac{{\sqrt 3 }}{2}\mathop j\limits^ \wedge } \right|} \right.$=
\[\sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}} \]= $\sqrt
{\dfrac{1}{4} + \dfrac{3}{4}} $=$\sqrt 1 $=$1$
$|\overrightarrow v |$= $\left| { - \dfrac{{\sqrt 2 }}{2}\mathop i\limits^ \wedge + \left.
{\dfrac{{\sqrt 2 }}{2}\mathop j\limits^ \wedge } \right|} \right.$= \[\sqrt {{{\left( { - \dfrac{{\sqrt
2 }}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 2 }}{2}} \right)}^2}} \]= $\sqrt {\dfrac{2}{4} +
\dfrac{2}{4}} $=$\sqrt 1 $=$1$
And now we perform the scalar product :
$\overrightarrow {u.} \overrightarrow v $ = $\left( {\dfrac{1}{2}\mathop i\limits^ \wedge +
\dfrac{{\sqrt 3 }}{2}\mathop j\limits^ \wedge } \right)$. $\left( { - \dfrac{{\sqrt 2 }}{2}\mathop
i\limits^ \wedge + \dfrac{{\sqrt 2 }}{2}\mathop j\limits^ \wedge } \right)$
= $\left( {\dfrac{1}{2}} \right)\left( { - \dfrac{{\sqrt 2 }}{2}} \right) + \left( {\dfrac{{\sqrt 3 }}{2}}
\right)\left( {\dfrac{{\sqrt 2 }}{2}} \right)$
= $
- \dfrac{{\sqrt 2 }}{4} + \dfrac{{\sqrt 2 \sqrt 3 }}{4} \\
\\
$
=$\dfrac{{\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{4}$
Now applying the formula $\overrightarrow {u.} \overrightarrow v = |u||v|\cos \theta $ we get :
We will substitute the values after getting each values of L . H . S . and R . H . S . we calculated before in the above formula to get the angle .
$\dfrac{{\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{4}$= $1.1.\cos \theta $
$\cos \theta $= $\dfrac{{\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{4}$
$\theta = \dfrac{{7\pi }}{{12}}$
Therefore the angle between the two vectors $\overrightarrow u $ and $\overrightarrow v $ is
$\theta = \dfrac{{7\pi }}{{12}}$ .
Note : The vectors are the objects ( physical quantity ) in real life that are having magnitude and direction . For instance , Force and Velocity .
The modulus actually means $\left| {\overrightarrow r } \right|$= $\sqrt {{a^2} + {b^2}} $
Always remember by scalar product we refer to dot product .
For above question we calculated the L . H . S . and R . H . S . independently using the formula $\overrightarrow {a.} \overrightarrow b = |a||b|\cos \theta $. And then combined and substituted the calculated values .
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE