Find the angle of intersection of two circles?
\[{{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\]
\[{{x}^{2}}+{{y}^{2}}+2{{g}_{1}}x+2{{f}_{1}}y+{{c}_{1}}=0\]
Answer
Verified
467.4k+ views
Hint: To solve this question, we will, first of all, compute the centre and radius of both the circles using the formula \[c=\left( \dfrac{-g}{a},\dfrac{-f}{a} \right)\] and \[r=\dfrac{1}{a}\sqrt{{{g}^{2}}+{{f}^{2}}-c}\] and then we will calculate the distance between \[{{c}_{1}}\] and \[{{c}_{2}}\] by using the distance between two points formula, \[d=\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}.\] Finally, we will use the formula of cos of the angle in a triangle to get the result.
Complete step-by-step solution:
We are given the two circles below.
\[{{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0.....\left( i \right)\]
\[{{x}^{2}}+{{y}^{2}}+2{{g}_{1}}x+2{{f}_{1}}y+{{c}_{1}}=0.....\left( ii \right)\]
They are given as
If the circles intersect at P, then the angle \[\theta \] is the angle between the tangents to both the circles at the point P. \[{{c}_{1}}\] and \[{{c}_{2}}\] are the centres of the circles given by the equation (i) and (ii) respectively. And the standard equation of a circle is of the form
\[a{{x}^{2}}+b{{y}^{2}}+2gx+2fy+2hxy+c=0\]
where a, b, h, g, f and c are constants and the radius of the circle is given by
\[r=\dfrac{1}{a}\sqrt{{{g}^{2}}+{{f}^{2}}-ca}\]
And the centre of the circle is given by
\[c=\left( \dfrac{-g}{a},\dfrac{-f}{a} \right)\]
Comparing this theory with our given equation (i) and equation (ii) of the circle, we have the centre as
\[{{c}_{1}}=\left( -g,-f \right)\]
\[{{c}_{2}}=\left( -{{g}_{1}},-{{f}_{1}} \right)\]
And radius is given as,
\[{{r}_{1}}=\sqrt{{{g}^{2}}+{{f}^{2}}-c}\]
\[{{r}_{2}}=\sqrt{{{g}_{1}}^{2}+{{f}_{1}}^{2}-{{c}_{1}}}\]
Clearly, as visible by the above diagram, the distance ‘d’ between the circles is given by
\[d=\left| {{c}_{1}}{{c}_{2}} \right|\]
The formula of the distance between the two points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is given by
\[d=\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}\]
Using this formula to find the distance \[d=\left| {{c}_{1}}{{c}_{2}} \right|\] we have,
\[d=\sqrt{{{\left( g-{{g}_{1}} \right)}^{2}}+{{\left( f-{{f}_{1}} \right)}^{2}}}\]
\[\Rightarrow d=\sqrt{{{g}^{2}}+{{g}_{1}}^{2}-2g{{g}_{1}}+{{f}^{2}}+{{f}_{1}}^{2}-2f{{f}_{1}}}\]
\[\Rightarrow d=\sqrt{{{g}^{2}}+{{f}^{2}}+{{g}_{1}}^{2}+{{f}_{1}}^{2}+-2g{{g}_{1}}-2f{{f}_{1}}}\]
Now considering the triangle \[{{c}_{1}}P{{c}_{2}}\] and the angle \[\alpha \] between \[{{c}_{1}}P{{c}_{2}}.\]
Now, if triangle ABC is given as below, where the angle \[\theta \] is \[\angle BAC,\] then if AB = c, AC = b and BC = a, then \[\cos \theta \] is given by the formula \[\cos \theta =\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}.\]
Applying this formula on the angle \[\alpha \] is given by
\[\cos \alpha =\dfrac{{{r}_{1}}^{2}+{{r}_{2}}^{2}-{{d}^{2}}}{2{{r}_{1}}{{r}_{2}}}\]
where \[\alpha \] is the angle \[\angle {{c}_{1}}P{{c}_{2}}.\]
Now, \[\theta \] is the angle \[\angle {{A}^{'}}P{{B}^{'}},\] this is so as vertically opposite angles are equal and \[\angle TPR=\theta .\]
\[\Rightarrow \angle {{A}^{'}}P{{B}^{'}}=\angle TPR=\theta \left[ \text{vertically opposite angles} \right]\]
Now, because \[{{A}^{'}}{{c}_{2}}\] and \[{{B}^{'}}{{c}_{1}}\] are tangles to the circles of the centre \[{{c}_{1}}\] and centre \[{{c}_{2}}\] respectively, then \[\angle {{B}^{'}}P{{c}_{2}}=\angle {{A}^{'}}P{{c}_{1}}={{90}^{\circ }}.\]
Finally, we have a full circle angle that is \[{{360}^{\circ }}.\]
\[\Rightarrow \angle {{B}^{'}}P{{c}_{2}}+\angle {{A}^{'}}P{{c}_{1}}+\angle {{A}^{'}}P{{B}^{'}}+\angle {{c}_{1}}P{{c}_{2}}={{360}^{\circ }}\]
\[\Rightarrow {{90}^{\circ }}+{{90}^{\circ }}+\alpha +\theta ={{360}^{\circ }}\]
\[\Rightarrow \alpha ={{180}^{\circ }}-\theta \]
Now, as \[\cos \alpha =\dfrac{{{r}_{1}}^{2}+{{r}_{2}}^{2}-{{d}^{2}}}{2{{r}_{1}}{{r}_{2}}}\]
\[\Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=\dfrac{{{r}_{1}}^{2}+{{r}_{2}}^{2}-{{d}^{2}}}{2{{r}_{1}}{{r}_{2}}}\]
Hence, the angle between the circle is given by \[\cos \left( {{180}^{\circ }}-\theta \right)=\dfrac{{{r}_{1}}^{2}+{{r}_{2}}^{2}-{{d}^{2}}}{2{{r}_{1}}{{r}_{2}}}\] where \[{{r}_{1}}\] is the radius of the circle \[{{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\] and \[{{r}_{2}}\] is the radius of the circle having equation \[{{x}^{2}}+{{y}^{2}}+2{{g}_{1}}x+2{{f}_{1}}y+{{c}_{1}}=0\] and d is the distance between the centre \[{{c}_{1}}\] and \[{{c}_{2}}\] of both the circles.
Note: Because \[\alpha \] is the angle between the centre \[{{c}_{1}}\] of the circle \[{{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\] and the centre \[{{c}_{2}}\] of the circle \[{{x}^{2}}+{{y}^{2}}+2{{g}_{1}}x+2{{f}_{1}}y+{{c}_{1}}=0.\] Therefore, we needed to calculate the value of \[\alpha .\] This \[\alpha \] will give the angle between two given circles. Also, in such cases always the angle from the centre of the two circles is measured.
Complete step-by-step solution:
We are given the two circles below.
\[{{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0.....\left( i \right)\]
\[{{x}^{2}}+{{y}^{2}}+2{{g}_{1}}x+2{{f}_{1}}y+{{c}_{1}}=0.....\left( ii \right)\]
They are given as
If the circles intersect at P, then the angle \[\theta \] is the angle between the tangents to both the circles at the point P. \[{{c}_{1}}\] and \[{{c}_{2}}\] are the centres of the circles given by the equation (i) and (ii) respectively. And the standard equation of a circle is of the form
\[a{{x}^{2}}+b{{y}^{2}}+2gx+2fy+2hxy+c=0\]
where a, b, h, g, f and c are constants and the radius of the circle is given by
\[r=\dfrac{1}{a}\sqrt{{{g}^{2}}+{{f}^{2}}-ca}\]
And the centre of the circle is given by
\[c=\left( \dfrac{-g}{a},\dfrac{-f}{a} \right)\]
Comparing this theory with our given equation (i) and equation (ii) of the circle, we have the centre as
\[{{c}_{1}}=\left( -g,-f \right)\]
\[{{c}_{2}}=\left( -{{g}_{1}},-{{f}_{1}} \right)\]
And radius is given as,
\[{{r}_{1}}=\sqrt{{{g}^{2}}+{{f}^{2}}-c}\]
\[{{r}_{2}}=\sqrt{{{g}_{1}}^{2}+{{f}_{1}}^{2}-{{c}_{1}}}\]
Clearly, as visible by the above diagram, the distance ‘d’ between the circles is given by
\[d=\left| {{c}_{1}}{{c}_{2}} \right|\]
The formula of the distance between the two points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is given by
\[d=\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}\]
Using this formula to find the distance \[d=\left| {{c}_{1}}{{c}_{2}} \right|\] we have,
\[d=\sqrt{{{\left( g-{{g}_{1}} \right)}^{2}}+{{\left( f-{{f}_{1}} \right)}^{2}}}\]
\[\Rightarrow d=\sqrt{{{g}^{2}}+{{g}_{1}}^{2}-2g{{g}_{1}}+{{f}^{2}}+{{f}_{1}}^{2}-2f{{f}_{1}}}\]
\[\Rightarrow d=\sqrt{{{g}^{2}}+{{f}^{2}}+{{g}_{1}}^{2}+{{f}_{1}}^{2}+-2g{{g}_{1}}-2f{{f}_{1}}}\]
Now considering the triangle \[{{c}_{1}}P{{c}_{2}}\] and the angle \[\alpha \] between \[{{c}_{1}}P{{c}_{2}}.\]
Now, if triangle ABC is given as below, where the angle \[\theta \] is \[\angle BAC,\] then if AB = c, AC = b and BC = a, then \[\cos \theta \] is given by the formula \[\cos \theta =\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}.\]
Applying this formula on the angle \[\alpha \] is given by
\[\cos \alpha =\dfrac{{{r}_{1}}^{2}+{{r}_{2}}^{2}-{{d}^{2}}}{2{{r}_{1}}{{r}_{2}}}\]
where \[\alpha \] is the angle \[\angle {{c}_{1}}P{{c}_{2}}.\]
Now, \[\theta \] is the angle \[\angle {{A}^{'}}P{{B}^{'}},\] this is so as vertically opposite angles are equal and \[\angle TPR=\theta .\]
\[\Rightarrow \angle {{A}^{'}}P{{B}^{'}}=\angle TPR=\theta \left[ \text{vertically opposite angles} \right]\]
Now, because \[{{A}^{'}}{{c}_{2}}\] and \[{{B}^{'}}{{c}_{1}}\] are tangles to the circles of the centre \[{{c}_{1}}\] and centre \[{{c}_{2}}\] respectively, then \[\angle {{B}^{'}}P{{c}_{2}}=\angle {{A}^{'}}P{{c}_{1}}={{90}^{\circ }}.\]
Finally, we have a full circle angle that is \[{{360}^{\circ }}.\]
\[\Rightarrow \angle {{B}^{'}}P{{c}_{2}}+\angle {{A}^{'}}P{{c}_{1}}+\angle {{A}^{'}}P{{B}^{'}}+\angle {{c}_{1}}P{{c}_{2}}={{360}^{\circ }}\]
\[\Rightarrow {{90}^{\circ }}+{{90}^{\circ }}+\alpha +\theta ={{360}^{\circ }}\]
\[\Rightarrow \alpha ={{180}^{\circ }}-\theta \]
Now, as \[\cos \alpha =\dfrac{{{r}_{1}}^{2}+{{r}_{2}}^{2}-{{d}^{2}}}{2{{r}_{1}}{{r}_{2}}}\]
\[\Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=\dfrac{{{r}_{1}}^{2}+{{r}_{2}}^{2}-{{d}^{2}}}{2{{r}_{1}}{{r}_{2}}}\]
Hence, the angle between the circle is given by \[\cos \left( {{180}^{\circ }}-\theta \right)=\dfrac{{{r}_{1}}^{2}+{{r}_{2}}^{2}-{{d}^{2}}}{2{{r}_{1}}{{r}_{2}}}\] where \[{{r}_{1}}\] is the radius of the circle \[{{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\] and \[{{r}_{2}}\] is the radius of the circle having equation \[{{x}^{2}}+{{y}^{2}}+2{{g}_{1}}x+2{{f}_{1}}y+{{c}_{1}}=0\] and d is the distance between the centre \[{{c}_{1}}\] and \[{{c}_{2}}\] of both the circles.
Note: Because \[\alpha \] is the angle between the centre \[{{c}_{1}}\] of the circle \[{{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\] and the centre \[{{c}_{2}}\] of the circle \[{{x}^{2}}+{{y}^{2}}+2{{g}_{1}}x+2{{f}_{1}}y+{{c}_{1}}=0.\] Therefore, we needed to calculate the value of \[\alpha .\] This \[\alpha \] will give the angle between two given circles. Also, in such cases always the angle from the centre of the two circles is measured.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE