Answer
Verified
459k+ views
Hint: In the above question it is asked to calculate the angle of projection under some given circumstances. For that we have to equate the expression for height of the projectile to twice the range(horizontal distance) covered by the projectile. Let us assume that this projection of the body takes place in vacuum i.e. no air is present that might offer air drag to the projectile.
Complete answer:
To begin with let us first draw the above projection of the projectile for better visualization.
If we see the above figure we can clearly see that the height of the projectile is twice the range of the projectile. Let us say the time taken by the projectile to reach its maximum height is T. Therefore the total time of flight is 2T. The maximum height achieved by a projectile ignoring the air resistance is given by ${{\text{H}}_{\text{M}}}\text{=}\dfrac{{{\text{U}}^{\text{2}}}\text{Si}{{\text{n}}^{\text{2}}}\text{ }\!\!\theta\!\!\text{ }}{\text{2g}}...(1)$ where U is the initial velocity, $\theta $ is the angle of projection and g is the acceleration due to gravity. The horizontal distance covered by the projectile i.e. range is given by, $\text{R=}\dfrac{{{\text{U}}^{\text{2}}}\text{Sin2 }\!\!\theta\!\!\text{ }}{\text{g}}...(2)$.We want to calculate the angle of projection for the condition i.e.
${{H}_{M}}=2R...(3)$ Hence substituting equation 1 and 2 in 3 we get,
$\dfrac{{{\text{U}}^{\text{2}}}\text{Si}{{\text{n}}^{\text{2}}}\text{ }\!\!\theta\!\!\text{ }}{\text{2g}}=\dfrac{{{\text{U}}^{\text{2}}}\text{Sin2 }\!\!\theta\!\!\text{ }}{\text{g}}$ Further after cancelling the similar terms we get,
$\begin{align}
& \dfrac{\text{Si}{{\text{n}}^{\text{2}}}\text{ }\!\!\theta\!\!\text{ }}{\text{2}}=\text{Sin2 }\!\!\theta\!\!\text{ , since Sin2 }\!\!\theta\!\!\text{ =2Sin }\!\!\theta\!\!\text{ Cos }\!\!\theta\!\!\text{ } \\
& \dfrac{\text{Si}{{\text{n}}^{\text{2}}}\text{ }\!\!\theta\!\!\text{ }}{\text{2}}=\text{2Sin }\!\!\theta\!\!\text{ Cos }\!\!\theta\!\!\text{ } \\
& \dfrac{\text{Sin }\!\!\theta\!\!\text{ }}{\text{Cos }\!\!\theta\!\!\text{ }}=4 \\
\end{align}$
Since $\dfrac{\text{Sin }\!\!\theta\!\!\text{ }}{\text{Cos }\!\!\theta\!\!\text{ }}=\tan \theta $
$\begin{align}
& \text{Tan }\!\!\theta\!\!\text{ =4 hence} \\
& \text{ }\!\!\theta\!\!\text{ =Ta}{{\text{n}}^{\text{-1}}}\text{4=36}\text{.8}{{\text{6}}^{\text{o}}} \\
\end{align}$
Hence the angle of projection should be 36.86 degrees.
Note:
In the real world the angle of projection required to satisfy the above condition should have been slightly greater as the range would have been less due to air resistance. One more important fact is that for a given range the maximum height of the projectile can have two different values. This depends on the angle of projection.
Complete answer:
To begin with let us first draw the above projection of the projectile for better visualization.
If we see the above figure we can clearly see that the height of the projectile is twice the range of the projectile. Let us say the time taken by the projectile to reach its maximum height is T. Therefore the total time of flight is 2T. The maximum height achieved by a projectile ignoring the air resistance is given by ${{\text{H}}_{\text{M}}}\text{=}\dfrac{{{\text{U}}^{\text{2}}}\text{Si}{{\text{n}}^{\text{2}}}\text{ }\!\!\theta\!\!\text{ }}{\text{2g}}...(1)$ where U is the initial velocity, $\theta $ is the angle of projection and g is the acceleration due to gravity. The horizontal distance covered by the projectile i.e. range is given by, $\text{R=}\dfrac{{{\text{U}}^{\text{2}}}\text{Sin2 }\!\!\theta\!\!\text{ }}{\text{g}}...(2)$.We want to calculate the angle of projection for the condition i.e.
${{H}_{M}}=2R...(3)$ Hence substituting equation 1 and 2 in 3 we get,
$\dfrac{{{\text{U}}^{\text{2}}}\text{Si}{{\text{n}}^{\text{2}}}\text{ }\!\!\theta\!\!\text{ }}{\text{2g}}=\dfrac{{{\text{U}}^{\text{2}}}\text{Sin2 }\!\!\theta\!\!\text{ }}{\text{g}}$ Further after cancelling the similar terms we get,
$\begin{align}
& \dfrac{\text{Si}{{\text{n}}^{\text{2}}}\text{ }\!\!\theta\!\!\text{ }}{\text{2}}=\text{Sin2 }\!\!\theta\!\!\text{ , since Sin2 }\!\!\theta\!\!\text{ =2Sin }\!\!\theta\!\!\text{ Cos }\!\!\theta\!\!\text{ } \\
& \dfrac{\text{Si}{{\text{n}}^{\text{2}}}\text{ }\!\!\theta\!\!\text{ }}{\text{2}}=\text{2Sin }\!\!\theta\!\!\text{ Cos }\!\!\theta\!\!\text{ } \\
& \dfrac{\text{Sin }\!\!\theta\!\!\text{ }}{\text{Cos }\!\!\theta\!\!\text{ }}=4 \\
\end{align}$
Since $\dfrac{\text{Sin }\!\!\theta\!\!\text{ }}{\text{Cos }\!\!\theta\!\!\text{ }}=\tan \theta $
$\begin{align}
& \text{Tan }\!\!\theta\!\!\text{ =4 hence} \\
& \text{ }\!\!\theta\!\!\text{ =Ta}{{\text{n}}^{\text{-1}}}\text{4=36}\text{.8}{{\text{6}}^{\text{o}}} \\
\end{align}$
Hence the angle of projection should be 36.86 degrees.
Note:
In the real world the angle of projection required to satisfy the above condition should have been slightly greater as the range would have been less due to air resistance. One more important fact is that for a given range the maximum height of the projectile can have two different values. This depends on the angle of projection.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE