Answer
Verified
357.3k+ views
Hint: Let us first know about vectors. Vectors are useful in physics because they can represent location, displacement, velocity, and acceleration visually. When drawing vectors, you often don't have enough room to draw them to the scale they represent, therefore it's crucial to specify what scale you're working with.
Complete step by step solution:
Let P and Q be two vectors acting at the same time at a location, represented in magnitude and direction by two adjacent sides OA and OD of a parallelogram OABD, as shown in figure.
Let R be the resultant vector and be the angle between P and Q. The consequent of P and Q is therefore represented by diagonal OB, according to the parallelogram law of vector addition.
So,
$R = P + Q$
Expand A to C and draw BC perpendicular to OC at this point.
From triangle OCB
$O{B^2} = {C^2} + B{C^2}$
$ \Rightarrow $ $O{B^2} = {(OA + AC)^2} + B{C^2}$ ….$(1)$
In triangle ABC
$\cos \theta = \dfrac{{AC}}{{AB}}$
$ \Rightarrow $$AC = AB\,\cos \theta $
$ \Rightarrow $$AC = OD\,\cos \theta $
$AC = Q\cos \theta \,\,\,\,\,\,\,\,[AB = OD = Q]$
Also,
$\cos \theta = \dfrac{{BC}}{{AB}}$
$ \Rightarrow $\[\;BC{\text{ }} = {\text{ }}AB{\text{ }}sin\theta \]
$ \Rightarrow $\[BC{\text{ }} = {\text{ }}OD{\text{ }}sin\theta \]
$BC = Q{\text{ }}sin\theta \;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}[{\text{ }}AB{\text{ }} = {\text{ }}OD{\text{ }} = {\text{ }}Q\;]$
Magnitude of resultant we will be:
Substituting value of AC and BC in $(1)$ we get
\[{R^2} = {(P + Qcos\theta )^2} + {(Qsin\theta )^2}\]
$ \Rightarrow $\[{R^2} = {P^2} + 2PQcos\theta + {Q^2}co{s^2}\theta + {Q^2}si{n^2}\theta \]
$ \Rightarrow $\[{R^2} = {P^2} + 2PQcos\theta + {Q^2}\]
$ \Rightarrow $\[R{\text{ }} = \;\sqrt {{P^2} + 2PQcos\theta + {Q^2}} \]
Now let us see the direction of Resultant:
Let $\phi $ be the angle made by the resultant R with P.
From triangle OBC,
\[tan\phi = \dfrac{{BC}}{{OC}} = \dfrac{{BC}}{{OA + AC}}\]
$ \Rightarrow $\[\;tan\phi = \dfrac{{Q\,\sin \theta }}{{P + Q\cos \theta }}\]
\[\phi = {\tan ^{ - 1}}\left( {\dfrac{{Q\sin \theta }}{{P + Q\cos \theta }}} \right)\]
This is the angle of the resultant vector.
Note:
We use vector values like displacement, acceleration, and force to launch satellites into the sky, target foes on the battlefield, do sophisticated calculations within computers, and even identify our location using GPS or a map. As a result, vectors play a crucial part in our lives.
Complete step by step solution:
Let P and Q be two vectors acting at the same time at a location, represented in magnitude and direction by two adjacent sides OA and OD of a parallelogram OABD, as shown in figure.
Let R be the resultant vector and be the angle between P and Q. The consequent of P and Q is therefore represented by diagonal OB, according to the parallelogram law of vector addition.
So,
$R = P + Q$
Expand A to C and draw BC perpendicular to OC at this point.
From triangle OCB
$O{B^2} = {C^2} + B{C^2}$
$ \Rightarrow $ $O{B^2} = {(OA + AC)^2} + B{C^2}$ ….$(1)$
In triangle ABC
$\cos \theta = \dfrac{{AC}}{{AB}}$
$ \Rightarrow $$AC = AB\,\cos \theta $
$ \Rightarrow $$AC = OD\,\cos \theta $
$AC = Q\cos \theta \,\,\,\,\,\,\,\,[AB = OD = Q]$
Also,
$\cos \theta = \dfrac{{BC}}{{AB}}$
$ \Rightarrow $\[\;BC{\text{ }} = {\text{ }}AB{\text{ }}sin\theta \]
$ \Rightarrow $\[BC{\text{ }} = {\text{ }}OD{\text{ }}sin\theta \]
$BC = Q{\text{ }}sin\theta \;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}[{\text{ }}AB{\text{ }} = {\text{ }}OD{\text{ }} = {\text{ }}Q\;]$
Magnitude of resultant we will be:
Substituting value of AC and BC in $(1)$ we get
\[{R^2} = {(P + Qcos\theta )^2} + {(Qsin\theta )^2}\]
$ \Rightarrow $\[{R^2} = {P^2} + 2PQcos\theta + {Q^2}co{s^2}\theta + {Q^2}si{n^2}\theta \]
$ \Rightarrow $\[{R^2} = {P^2} + 2PQcos\theta + {Q^2}\]
$ \Rightarrow $\[R{\text{ }} = \;\sqrt {{P^2} + 2PQcos\theta + {Q^2}} \]
Now let us see the direction of Resultant:
Let $\phi $ be the angle made by the resultant R with P.
From triangle OBC,
\[tan\phi = \dfrac{{BC}}{{OC}} = \dfrac{{BC}}{{OA + AC}}\]
$ \Rightarrow $\[\;tan\phi = \dfrac{{Q\,\sin \theta }}{{P + Q\cos \theta }}\]
\[\phi = {\tan ^{ - 1}}\left( {\dfrac{{Q\sin \theta }}{{P + Q\cos \theta }}} \right)\]
This is the angle of the resultant vector.
Note:
We use vector values like displacement, acceleration, and force to launch satellites into the sky, target foes on the battlefield, do sophisticated calculations within computers, and even identify our location using GPS or a map. As a result, vectors play a crucial part in our lives.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
What planet is so light it could float in water class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Which are the Top 10 Largest Countries of the World?
Why is there a time difference of about 5 hours between class 10 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE