Answer
Verified
498.9k+ views
Hint:.The arc is any portion of the circumference of a circle. Arc length is the distance from one endpoint of the arc to the other point. Use an equation to find arc length \[=2\pi r\left( \dfrac{\theta }{360} \right)\].
Complete step-by-step answer:
Given that the radius of the circle = a
We need to find the angle subtended by arc length \[\left( \dfrac{a\pi }{4} \right)\]
From the figure it is clear that the length of arc is\[\Rightarrow \dfrac{a\pi }{4}\]
We need to find \[\theta \].
The formula for finding the arc length is given by
\[\Rightarrow \]arc length\[=2\pi r\left( \dfrac{\theta }{360} \right)\]
We can find the arc length or portion of the arc in the circumference, if we know at what portion of 360 degrees the arc’s central angle is.
Arc length\[=2\pi r\left( \dfrac{\theta }{360} \right)\], where r is the radius of the circle.
\[\therefore 2\pi r\left( \dfrac{\theta }{360} \right)=\dfrac{a\pi }{4}\]
We have been given arc length\[=\dfrac{a\pi }{4}\]
Put radius, r = a
\[\Rightarrow 2\pi a\left( \dfrac{\theta }{360} \right)=\dfrac{a\pi }{4}\]
Simplifying the above equation,
\[\begin{align}
& 2\pi a\left( \dfrac{\theta }{360} \right)=\dfrac{a}{4}\pi \\
& \Rightarrow \dfrac{\theta }{360}=\dfrac{1}{8}\Rightarrow \theta =\dfrac{360}{8}={{45}^{\circ }} \\
\end{align}\]
\[\therefore \]We get the angle subtended at the center of the circle\[={{45}^{\circ }}\]
Note: Here, arc length \[=\dfrac{a\pi }{4}\]
If we assume value of \[\theta ={{45}^{\circ }}\]and applying we get
\[\begin{align}
& =2\pi a\left( \dfrac{45}{360} \right) \\
& =2\pi a\left( \dfrac{1}{8} \right)=\dfrac{a\pi }{4} \\
\end{align}\]
Complete step-by-step answer:
Given that the radius of the circle = a
We need to find the angle subtended by arc length \[\left( \dfrac{a\pi }{4} \right)\]
From the figure it is clear that the length of arc is\[\Rightarrow \dfrac{a\pi }{4}\]
We need to find \[\theta \].
The formula for finding the arc length is given by
\[\Rightarrow \]arc length\[=2\pi r\left( \dfrac{\theta }{360} \right)\]
We can find the arc length or portion of the arc in the circumference, if we know at what portion of 360 degrees the arc’s central angle is.
Arc length\[=2\pi r\left( \dfrac{\theta }{360} \right)\], where r is the radius of the circle.
\[\therefore 2\pi r\left( \dfrac{\theta }{360} \right)=\dfrac{a\pi }{4}\]
We have been given arc length\[=\dfrac{a\pi }{4}\]
Put radius, r = a
\[\Rightarrow 2\pi a\left( \dfrac{\theta }{360} \right)=\dfrac{a\pi }{4}\]
Simplifying the above equation,
\[\begin{align}
& 2\pi a\left( \dfrac{\theta }{360} \right)=\dfrac{a}{4}\pi \\
& \Rightarrow \dfrac{\theta }{360}=\dfrac{1}{8}\Rightarrow \theta =\dfrac{360}{8}={{45}^{\circ }} \\
\end{align}\]
\[\therefore \]We get the angle subtended at the center of the circle\[={{45}^{\circ }}\]
Note: Here, arc length \[=\dfrac{a\pi }{4}\]
If we assume value of \[\theta ={{45}^{\circ }}\]and applying we get
\[\begin{align}
& =2\pi a\left( \dfrac{45}{360} \right) \\
& =2\pi a\left( \dfrac{1}{8} \right)=\dfrac{a\pi }{4} \\
\end{align}\]
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE