Answer
Verified
479.7k+ views
Hint: Here we solve the problem by comparing the given length of arc with the length of arc formula from which we can obtain the angle subtended at the centre of the given circle.
Complete step by step answer:
Here the given length of arc is $\dfrac{{5\pi }}{3}cm$.
Given a circle of radius (r) = 5cm.
We know that the formula of length of arc =$\dfrac{\theta }{{{{360}^ \circ }}}\left( {2\pi r} \right)$ where $\theta $ is angle subtended at centre and $2\pi r$ is the circumference of circle.
So, here let us equate the given length of arc with its formula to get the angle subtended at the centre of the circle.
Therefore
$ \Rightarrow \dfrac{{5\pi }}{3} = \dfrac{\theta }{{{{360}^ \circ }}} \times 2\pi r$
$ \Rightarrow \dfrac{{5\pi }}{3} = \dfrac{\theta }{{{{360}^ \circ }}} \times 2\pi \times 5$ $\left( {\because r = 5} \right)$
On further simplification we get
$ \Rightarrow \theta = \dfrac{{{{360}^ \circ }}}{6}$
$ \Rightarrow \theta = {60^ \circ }$
Therefore the angle subtended at the centre of the circle is ${60^ \circ }$.
NOTE: In the above problem we have compared the given value of length of arc with the formula of length of arc to get the theta value which is the angle subtended at the centre of the circle. Generally we forget to substitute the value of r with the radius of the circle which is mandatory to get the theta value.
Complete step by step answer:
Here the given length of arc is $\dfrac{{5\pi }}{3}cm$.
Given a circle of radius (r) = 5cm.
We know that the formula of length of arc =$\dfrac{\theta }{{{{360}^ \circ }}}\left( {2\pi r} \right)$ where $\theta $ is angle subtended at centre and $2\pi r$ is the circumference of circle.
So, here let us equate the given length of arc with its formula to get the angle subtended at the centre of the circle.
Therefore
$ \Rightarrow \dfrac{{5\pi }}{3} = \dfrac{\theta }{{{{360}^ \circ }}} \times 2\pi r$
$ \Rightarrow \dfrac{{5\pi }}{3} = \dfrac{\theta }{{{{360}^ \circ }}} \times 2\pi \times 5$ $\left( {\because r = 5} \right)$
On further simplification we get
$ \Rightarrow \theta = \dfrac{{{{360}^ \circ }}}{6}$
$ \Rightarrow \theta = {60^ \circ }$
Therefore the angle subtended at the centre of the circle is ${60^ \circ }$.
NOTE: In the above problem we have compared the given value of length of arc with the formula of length of arc to get the theta value which is the angle subtended at the centre of the circle. Generally we forget to substitute the value of r with the radius of the circle which is mandatory to get the theta value.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE