Answer
Verified
474.3k+ views
Hint: Here we solve the problem by comparing the given length of arc with the length of arc formula from which we can obtain the angle subtended at the centre of the given circle.
Complete step by step answer:
Here the given length of arc is $\dfrac{{5\pi }}{3}cm$.
Given a circle of radius (r) = 5cm.
We know that the formula of length of arc =$\dfrac{\theta }{{{{360}^ \circ }}}\left( {2\pi r} \right)$ where $\theta $ is angle subtended at centre and $2\pi r$ is the circumference of circle.
So, here let us equate the given length of arc with its formula to get the angle subtended at the centre of the circle.
Therefore
$ \Rightarrow \dfrac{{5\pi }}{3} = \dfrac{\theta }{{{{360}^ \circ }}} \times 2\pi r$
$ \Rightarrow \dfrac{{5\pi }}{3} = \dfrac{\theta }{{{{360}^ \circ }}} \times 2\pi \times 5$ $\left( {\because r = 5} \right)$
On further simplification we get
$ \Rightarrow \theta = \dfrac{{{{360}^ \circ }}}{6}$
$ \Rightarrow \theta = {60^ \circ }$
Therefore the angle subtended at the centre of the circle is ${60^ \circ }$.
NOTE: In the above problem we have compared the given value of length of arc with the formula of length of arc to get the theta value which is the angle subtended at the centre of the circle. Generally we forget to substitute the value of r with the radius of the circle which is mandatory to get the theta value.
Complete step by step answer:
Here the given length of arc is $\dfrac{{5\pi }}{3}cm$.
Given a circle of radius (r) = 5cm.
We know that the formula of length of arc =$\dfrac{\theta }{{{{360}^ \circ }}}\left( {2\pi r} \right)$ where $\theta $ is angle subtended at centre and $2\pi r$ is the circumference of circle.
So, here let us equate the given length of arc with its formula to get the angle subtended at the centre of the circle.
Therefore
$ \Rightarrow \dfrac{{5\pi }}{3} = \dfrac{\theta }{{{{360}^ \circ }}} \times 2\pi r$
$ \Rightarrow \dfrac{{5\pi }}{3} = \dfrac{\theta }{{{{360}^ \circ }}} \times 2\pi \times 5$ $\left( {\because r = 5} \right)$
On further simplification we get
$ \Rightarrow \theta = \dfrac{{{{360}^ \circ }}}{6}$
$ \Rightarrow \theta = {60^ \circ }$
Therefore the angle subtended at the centre of the circle is ${60^ \circ }$.
NOTE: In the above problem we have compared the given value of length of arc with the formula of length of arc to get the theta value which is the angle subtended at the centre of the circle. Generally we forget to substitute the value of r with the radius of the circle which is mandatory to get the theta value.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
The states of India which do not have an International class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Name the three parallel ranges of the Himalayas Describe class 9 social science CBSE