Answer
Verified
430.5k+ views
Hint: Find the integration of the given function in order to find its antiderivative. The given trigonometric expression is non elementary, so use the Maclaurin power expansion of the given function and then integrate that expansion to the antiderivative of the given function. Maclaurin expansion of cosine is given as
$\cos x = \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}}}{{(2n)!}}{x^{2n}}} $
Use this information to find the antiderivative of the given function.
Formula used:
Maclaurin series of cosine $\cos x = \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}}}{{(2n)!}}{x^{2n}}} $
Complete step by step solution:
To find the antiderivative of $\cos \left( {{x^2}} \right)$, let us understand first what is antiderivative of a function?
When we take an antiderivative also called the inverse derivative of a function f is a function then it gives a function F whose derivative is equal to the original function f.
That is in simple words antiderivative is the integration of a function.
Therefore to find the antiderivative of $\cos \left( {{x^2}} \right)$, we will find its integration.
Since the integral of $\cos \left( {{x^2}} \right)$ is non elementary, we cannot integrate it directly, so we will integrate it via power series.
For integration via power series, let us recall the Maclaurin series of cosine,
$
\cos x = \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}}}{{(2n)!}}{x^{2n}}} \\
\Rightarrow \cos \left( {{x^2}} \right) = \sum\limits_{n = 0}^\infty {\dfrac{{{{( -
1)}^n}}}{{(2n)!}}{{\left( {{x^2}} \right)}^{2n}}} \\
\therefore \cos \left( {{x^2}} \right) = \sum\limits_{n = 0}^\infty {\dfrac{{{{( -
1)}^n}}}{{(2n)!}}{x^{4n}}} \\
$
Taking the integration both sides, we will get
$\int {\cos \left( {{x^2}} \right)dx} = \int {\sum\limits_{n = 0}^\infty {\dfrac{{{{( -
1)}^n}}}{{(2n)!}}{x^{4n}}} } dx$
Here taking out the constant term,
$
\int {\cos \left( {{x^2}} \right)dx} = \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}}}{{(2n)!}}} \int
{{x^{4n}}} dx \\
= \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}}}{{(2n)!}}} \times \dfrac{{{x^{4n + 1}}}}{{(4n + 1)}} +
C \\
= \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}{x^{4n + 1}}}}{{(2n)!(4n + 1)}}} + C \\
$
Therefore $\sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}{x^{4n + 1}}}}{{(2n)!(4n + 1)}}} + C$ is the required antiderivative of $\cos \left( {{x^2}} \right)$
Note: There is a bit difference in antiderivative and integration, Integration is a function associates with the original function whereas antiderivative of $f(x)$ is just a function whose derivative is $f(x)$ This question can be solved with one more method in which we integrate $\cos \left( {{x^2}} \right)$ with help of the Fresnel integral. You will get a different expression at the end of the Fresnel integral process for this question but don’t worry both are equal and correct.
$\cos x = \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}}}{{(2n)!}}{x^{2n}}} $
Use this information to find the antiderivative of the given function.
Formula used:
Maclaurin series of cosine $\cos x = \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}}}{{(2n)!}}{x^{2n}}} $
Complete step by step solution:
To find the antiderivative of $\cos \left( {{x^2}} \right)$, let us understand first what is antiderivative of a function?
When we take an antiderivative also called the inverse derivative of a function f is a function then it gives a function F whose derivative is equal to the original function f.
That is in simple words antiderivative is the integration of a function.
Therefore to find the antiderivative of $\cos \left( {{x^2}} \right)$, we will find its integration.
Since the integral of $\cos \left( {{x^2}} \right)$ is non elementary, we cannot integrate it directly, so we will integrate it via power series.
For integration via power series, let us recall the Maclaurin series of cosine,
$
\cos x = \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}}}{{(2n)!}}{x^{2n}}} \\
\Rightarrow \cos \left( {{x^2}} \right) = \sum\limits_{n = 0}^\infty {\dfrac{{{{( -
1)}^n}}}{{(2n)!}}{{\left( {{x^2}} \right)}^{2n}}} \\
\therefore \cos \left( {{x^2}} \right) = \sum\limits_{n = 0}^\infty {\dfrac{{{{( -
1)}^n}}}{{(2n)!}}{x^{4n}}} \\
$
Taking the integration both sides, we will get
$\int {\cos \left( {{x^2}} \right)dx} = \int {\sum\limits_{n = 0}^\infty {\dfrac{{{{( -
1)}^n}}}{{(2n)!}}{x^{4n}}} } dx$
Here taking out the constant term,
$
\int {\cos \left( {{x^2}} \right)dx} = \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}}}{{(2n)!}}} \int
{{x^{4n}}} dx \\
= \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}}}{{(2n)!}}} \times \dfrac{{{x^{4n + 1}}}}{{(4n + 1)}} +
C \\
= \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}{x^{4n + 1}}}}{{(2n)!(4n + 1)}}} + C \\
$
Therefore $\sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}{x^{4n + 1}}}}{{(2n)!(4n + 1)}}} + C$ is the required antiderivative of $\cos \left( {{x^2}} \right)$
Note: There is a bit difference in antiderivative and integration, Integration is a function associates with the original function whereas antiderivative of $f(x)$ is just a function whose derivative is $f(x)$ This question can be solved with one more method in which we integrate $\cos \left( {{x^2}} \right)$ with help of the Fresnel integral. You will get a different expression at the end of the Fresnel integral process for this question but don’t worry both are equal and correct.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE