Answer
Verified
431.4k+ views
Hint: For the given question we are given to solve the antiderivative of \[{{\left( 5x+1 \right)}^{2}}\]. For that let us expand the given equation by using basic algebraic formulas and then we have to integrate the resultant equation by using the basic integration formulas.
Complete step by step answer:
For the given problem we are given to find the antiderivative of the equation \[{{\left( 5x+1 \right)}^{2}}\].
Let us consider the given equation as equation (1) to get solved.
\[a={{\left( 5x+1 \right)}^{2}}...........\left( 1 \right)\]
For a polynomial of just degree 2, I would expand the equation and solve.
So, let us expand the equation (1) by using the formula \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\].
Let us consider the given formula as formula (f1).
\[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}............\left( f1 \right)\]
By using the formula (f1) let us expand equation (1)
\[\Rightarrow a=25{{x}^{2}}+1+10x\]
Let us consider the above equation as equation (2).
\[\Rightarrow a=25{{x}^{2}}+1+10x................\left( 2 \right)\]
By doing antiderivative to the equation (2).
\[\Rightarrow a=\int{25{{x}^{2}}+1+10x\text{ dx}}\]
Let us consider the given equation as equation (2).
\[\Rightarrow a=\int{25{{x}^{2}}+1+10x\text{ dx}}...............\left( 2 \right)\]
As we know the formula \[\int{{{a}^{x}}dx=\dfrac{{{a}^{x+1}}}{x+1}+c}\].
Let us consider the above formula as (f2).
\[\int{{{a}^{x}}dx=\dfrac{{{a}^{x+1}}}{x+1}+c}................\left( 2 \right)\]
By applying formula (f2) to equation (2), we get
\[\Rightarrow a=25\dfrac{{{x}^{3}}}{3}+x+10\dfrac{{{x}^{2}}}{2}\]
By simplifying a bit, we get
\[\Rightarrow a=\dfrac{25}{3}{{x}^{3}}+x+5{{x}^{2}}+c\]
By arranging terms in power wise, we get
\[\Rightarrow a=\dfrac{25}{3}{{x}^{3}}+5{{x}^{2}}+x+c\]
Therefore, let us consider the equation as equation (3).
\[\Rightarrow a=\dfrac{25}{3}{{x}^{3}}+x+5{{x}^{2}}+c...............\left( 3 \right)\]
Therefore, antiderivative of \[{{\left( 5x+1 \right)}^{2}}\] is \[a=\dfrac{25}{3}{{x}^{3}}+5{{x}^{2}}+x+c\].
Note:
We should know that antiderivative means summation i.e. integration. We can do this problem by another way i.e. we can do direct integration to the given equation without expanding. But I think the way I solved this problem is easier than any other method.
Complete step by step answer:
For the given problem we are given to find the antiderivative of the equation \[{{\left( 5x+1 \right)}^{2}}\].
Let us consider the given equation as equation (1) to get solved.
\[a={{\left( 5x+1 \right)}^{2}}...........\left( 1 \right)\]
For a polynomial of just degree 2, I would expand the equation and solve.
So, let us expand the equation (1) by using the formula \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\].
Let us consider the given formula as formula (f1).
\[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}............\left( f1 \right)\]
By using the formula (f1) let us expand equation (1)
\[\Rightarrow a=25{{x}^{2}}+1+10x\]
Let us consider the above equation as equation (2).
\[\Rightarrow a=25{{x}^{2}}+1+10x................\left( 2 \right)\]
By doing antiderivative to the equation (2).
\[\Rightarrow a=\int{25{{x}^{2}}+1+10x\text{ dx}}\]
Let us consider the given equation as equation (2).
\[\Rightarrow a=\int{25{{x}^{2}}+1+10x\text{ dx}}...............\left( 2 \right)\]
As we know the formula \[\int{{{a}^{x}}dx=\dfrac{{{a}^{x+1}}}{x+1}+c}\].
Let us consider the above formula as (f2).
\[\int{{{a}^{x}}dx=\dfrac{{{a}^{x+1}}}{x+1}+c}................\left( 2 \right)\]
By applying formula (f2) to equation (2), we get
\[\Rightarrow a=25\dfrac{{{x}^{3}}}{3}+x+10\dfrac{{{x}^{2}}}{2}\]
By simplifying a bit, we get
\[\Rightarrow a=\dfrac{25}{3}{{x}^{3}}+x+5{{x}^{2}}+c\]
By arranging terms in power wise, we get
\[\Rightarrow a=\dfrac{25}{3}{{x}^{3}}+5{{x}^{2}}+x+c\]
Therefore, let us consider the equation as equation (3).
\[\Rightarrow a=\dfrac{25}{3}{{x}^{3}}+x+5{{x}^{2}}+c...............\left( 3 \right)\]
Therefore, antiderivative of \[{{\left( 5x+1 \right)}^{2}}\] is \[a=\dfrac{25}{3}{{x}^{3}}+5{{x}^{2}}+x+c\].
Note:
We should know that antiderivative means summation i.e. integration. We can do this problem by another way i.e. we can do direct integration to the given equation without expanding. But I think the way I solved this problem is easier than any other method.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE