
How do you find the antiderivative of \[{{\left( 5x+1 \right)}^{2}}\] ?
Answer
553.8k+ views
Hint: For the given question we are given to solve the antiderivative of \[{{\left( 5x+1 \right)}^{2}}\]. For that let us expand the given equation by using basic algebraic formulas and then we have to integrate the resultant equation by using the basic integration formulas.
Complete step by step answer:
For the given problem we are given to find the antiderivative of the equation \[{{\left( 5x+1 \right)}^{2}}\].
Let us consider the given equation as equation (1) to get solved.
\[a={{\left( 5x+1 \right)}^{2}}...........\left( 1 \right)\]
For a polynomial of just degree 2, I would expand the equation and solve.
So, let us expand the equation (1) by using the formula \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\].
Let us consider the given formula as formula (f1).
\[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}............\left( f1 \right)\]
By using the formula (f1) let us expand equation (1)
\[\Rightarrow a=25{{x}^{2}}+1+10x\]
Let us consider the above equation as equation (2).
\[\Rightarrow a=25{{x}^{2}}+1+10x................\left( 2 \right)\]
By doing antiderivative to the equation (2).
\[\Rightarrow a=\int{25{{x}^{2}}+1+10x\text{ dx}}\]
Let us consider the given equation as equation (2).
\[\Rightarrow a=\int{25{{x}^{2}}+1+10x\text{ dx}}...............\left( 2 \right)\]
As we know the formula \[\int{{{a}^{x}}dx=\dfrac{{{a}^{x+1}}}{x+1}+c}\].
Let us consider the above formula as (f2).
\[\int{{{a}^{x}}dx=\dfrac{{{a}^{x+1}}}{x+1}+c}................\left( 2 \right)\]
By applying formula (f2) to equation (2), we get
\[\Rightarrow a=25\dfrac{{{x}^{3}}}{3}+x+10\dfrac{{{x}^{2}}}{2}\]
By simplifying a bit, we get
\[\Rightarrow a=\dfrac{25}{3}{{x}^{3}}+x+5{{x}^{2}}+c\]
By arranging terms in power wise, we get
\[\Rightarrow a=\dfrac{25}{3}{{x}^{3}}+5{{x}^{2}}+x+c\]
Therefore, let us consider the equation as equation (3).
\[\Rightarrow a=\dfrac{25}{3}{{x}^{3}}+x+5{{x}^{2}}+c...............\left( 3 \right)\]
Therefore, antiderivative of \[{{\left( 5x+1 \right)}^{2}}\] is \[a=\dfrac{25}{3}{{x}^{3}}+5{{x}^{2}}+x+c\].
Note:
We should know that antiderivative means summation i.e. integration. We can do this problem by another way i.e. we can do direct integration to the given equation without expanding. But I think the way I solved this problem is easier than any other method.
Complete step by step answer:
For the given problem we are given to find the antiderivative of the equation \[{{\left( 5x+1 \right)}^{2}}\].
Let us consider the given equation as equation (1) to get solved.
\[a={{\left( 5x+1 \right)}^{2}}...........\left( 1 \right)\]
For a polynomial of just degree 2, I would expand the equation and solve.
So, let us expand the equation (1) by using the formula \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\].
Let us consider the given formula as formula (f1).
\[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}............\left( f1 \right)\]
By using the formula (f1) let us expand equation (1)
\[\Rightarrow a=25{{x}^{2}}+1+10x\]
Let us consider the above equation as equation (2).
\[\Rightarrow a=25{{x}^{2}}+1+10x................\left( 2 \right)\]
By doing antiderivative to the equation (2).
\[\Rightarrow a=\int{25{{x}^{2}}+1+10x\text{ dx}}\]
Let us consider the given equation as equation (2).
\[\Rightarrow a=\int{25{{x}^{2}}+1+10x\text{ dx}}...............\left( 2 \right)\]
As we know the formula \[\int{{{a}^{x}}dx=\dfrac{{{a}^{x+1}}}{x+1}+c}\].
Let us consider the above formula as (f2).
\[\int{{{a}^{x}}dx=\dfrac{{{a}^{x+1}}}{x+1}+c}................\left( 2 \right)\]
By applying formula (f2) to equation (2), we get
\[\Rightarrow a=25\dfrac{{{x}^{3}}}{3}+x+10\dfrac{{{x}^{2}}}{2}\]
By simplifying a bit, we get
\[\Rightarrow a=\dfrac{25}{3}{{x}^{3}}+x+5{{x}^{2}}+c\]
By arranging terms in power wise, we get
\[\Rightarrow a=\dfrac{25}{3}{{x}^{3}}+5{{x}^{2}}+x+c\]
Therefore, let us consider the equation as equation (3).
\[\Rightarrow a=\dfrac{25}{3}{{x}^{3}}+x+5{{x}^{2}}+c...............\left( 3 \right)\]
Therefore, antiderivative of \[{{\left( 5x+1 \right)}^{2}}\] is \[a=\dfrac{25}{3}{{x}^{3}}+5{{x}^{2}}+x+c\].
Note:
We should know that antiderivative means summation i.e. integration. We can do this problem by another way i.e. we can do direct integration to the given equation without expanding. But I think the way I solved this problem is easier than any other method.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

