
Find the area bounded by the ellipse \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\] and the ordinates $x = 0$and $x = ae$, where ${b^2} = {a^2}\left( {1 - {e^2}} \right)$ and $e < 1$.
Answer
524.4k+ views
Hint: Simplify the given ellipse equation and integrate within the given ordinate limits to find the area.
An ellipse of the form \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\] will meet the X-axis at (a, 0) and the Y-axis at (0, b). Let these points be P (a,0) and Q (0, b). It is symmetrical about the axes.
The ordinates given are $x = 0$and $x = ae$ which will be parallel to the Y-axis as shown in the figure.
The shaded area is the area bounded by the ellipse and the given ordinates.
Required area = Area of the shaded region
= $2 \times $Area of QOCD
=$2 \times \int_0^{ae} y dx$ …(1)
The given equation is \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\]. Let us find the value of y from this equation and substitute in equation (1).
$\begin{gathered}
\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 \\
\begin{array}{*{20}{l}}
\begin{gathered}
\dfrac{{{y^2}}}{{{b^2}}} = 1 - \dfrac{{{x^2}}}{{{a^2}}} \\
\dfrac{{{y^2}}}{{{b^2}}} = \dfrac{{{a^2} - {x^2}}}{{{a^2}}} \\
\end{gathered} \\
{{y^2} = \dfrac{{{b^2}}}{{{a^2}}}\left( {{a^2} - {x^2}} \right)} \\
{y = \pm \sqrt {\dfrac{{{b^2}}}{{{a^2}}}\left( {{a^2} - {x^2}} \right)} } \\
{y = \pm \dfrac{b}{a}\sqrt {\left( {{a^2} - {x^2}} \right)} }
\end{array} \\
\end{gathered} $
Since, the area in equation (1) which is the area of QOCD is in the 1st quadrant. Hence, the value of y will be positive.
Hence, $y = \dfrac{b}{a}\sqrt {\left( {{a^2} - {x^2}} \right)} $ …(2)
Substituting (2) in (1),
Required area =$2 \times \int_0^{ae} y dx$
\[\begin{array}{*{20}{l}}
{ = 2\mathop \smallint \limits_0^{ae} \dfrac{b}{a}\sqrt {{a^2} - {x^2}} dx} \\
{ = \dfrac{{2b}}{a}\mathop \smallint \limits_0^{ae} \sqrt {{a^2} - {x^2}} dx}
\end{array}\] (Since a and b are constants)
We know that, \[\mathop \smallint \nolimits^ \sqrt {{a^2} - {x^2}} dx = \dfrac{{x\sqrt {{a^2} - {x^2}} }}{2} + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}(\dfrac{x}{a}) + c\]
Using this in the previous step, we get
Required area = \[\dfrac{{2b}}{a}[\dfrac{1}{2}x\sqrt {{a^2} - {x^2}} + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}\dfrac{x}{a}]_0^{ae}\] \[\begin{gathered}
\begin{array}{*{20}{l}}
{ = \dfrac{{2b}}{a}[(\dfrac{{ae}}{2}\sqrt {{a^2} - {{(ae)}^2}} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}\dfrac{{ae}}{a}) - (\dfrac{0}{2}\sqrt {{a^2} - 0} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(\dfrac{0}{a}))]} \\
{ = \dfrac{{2b}}{a}[\dfrac{{ae}}{2}\sqrt {{a^2} - {a^2}{e^2}} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(e) - 0 - \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(0)]} \\
{ = \dfrac{{2b}}{a}[\dfrac{{ae}}{2} \cdot a\sqrt {1 - {e^2}} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}e - 0]}
\end{array} \\
\begin{array}{*{20}{l}}
{ = \dfrac{{2b}}{a}[\dfrac{{{a^2}e}}{2}\sqrt {1 - {e^2}} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}e]} \\
{ = \dfrac{{2b}}{a}(\dfrac{{{a^2}}}{2})[e\sqrt {1 - {e^2}} + {{\sin }^{ - 1}}e]} \\
{ = ab[e\sqrt {1 - {e^2}} + {{\sin }^{ - 1}}e]}
\end{array} \\
\end{gathered} \]
Required Area bounded by the ellipse \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\] and the ordinates $x = 0$and $x = ae$
\[ = ab[e\sqrt {1 - {e^2}} + {\sin ^{ - 1}}e]\]
Note: The required area can also be found by integrating the entire shaded area QOABCD instead of finding $2 \times $Area of QOCD. It would be a little lengthier and more unnecessary because the given ellipse is symmetrical about the origin.
An ellipse of the form \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\] will meet the X-axis at (a, 0) and the Y-axis at (0, b). Let these points be P (a,0) and Q (0, b). It is symmetrical about the axes.
The ordinates given are $x = 0$and $x = ae$ which will be parallel to the Y-axis as shown in the figure.
The shaded area is the area bounded by the ellipse and the given ordinates.

Required area = Area of the shaded region
= $2 \times $Area of QOCD
=$2 \times \int_0^{ae} y dx$ …(1)
The given equation is \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\]. Let us find the value of y from this equation and substitute in equation (1).
$\begin{gathered}
\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 \\
\begin{array}{*{20}{l}}
\begin{gathered}
\dfrac{{{y^2}}}{{{b^2}}} = 1 - \dfrac{{{x^2}}}{{{a^2}}} \\
\dfrac{{{y^2}}}{{{b^2}}} = \dfrac{{{a^2} - {x^2}}}{{{a^2}}} \\
\end{gathered} \\
{{y^2} = \dfrac{{{b^2}}}{{{a^2}}}\left( {{a^2} - {x^2}} \right)} \\
{y = \pm \sqrt {\dfrac{{{b^2}}}{{{a^2}}}\left( {{a^2} - {x^2}} \right)} } \\
{y = \pm \dfrac{b}{a}\sqrt {\left( {{a^2} - {x^2}} \right)} }
\end{array} \\
\end{gathered} $
Since, the area in equation (1) which is the area of QOCD is in the 1st quadrant. Hence, the value of y will be positive.
Hence, $y = \dfrac{b}{a}\sqrt {\left( {{a^2} - {x^2}} \right)} $ …(2)
Substituting (2) in (1),
Required area =$2 \times \int_0^{ae} y dx$
\[\begin{array}{*{20}{l}}
{ = 2\mathop \smallint \limits_0^{ae} \dfrac{b}{a}\sqrt {{a^2} - {x^2}} dx} \\
{ = \dfrac{{2b}}{a}\mathop \smallint \limits_0^{ae} \sqrt {{a^2} - {x^2}} dx}
\end{array}\] (Since a and b are constants)
We know that, \[\mathop \smallint \nolimits^ \sqrt {{a^2} - {x^2}} dx = \dfrac{{x\sqrt {{a^2} - {x^2}} }}{2} + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}(\dfrac{x}{a}) + c\]
Using this in the previous step, we get
Required area = \[\dfrac{{2b}}{a}[\dfrac{1}{2}x\sqrt {{a^2} - {x^2}} + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}\dfrac{x}{a}]_0^{ae}\] \[\begin{gathered}
\begin{array}{*{20}{l}}
{ = \dfrac{{2b}}{a}[(\dfrac{{ae}}{2}\sqrt {{a^2} - {{(ae)}^2}} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}\dfrac{{ae}}{a}) - (\dfrac{0}{2}\sqrt {{a^2} - 0} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(\dfrac{0}{a}))]} \\
{ = \dfrac{{2b}}{a}[\dfrac{{ae}}{2}\sqrt {{a^2} - {a^2}{e^2}} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(e) - 0 - \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(0)]} \\
{ = \dfrac{{2b}}{a}[\dfrac{{ae}}{2} \cdot a\sqrt {1 - {e^2}} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}e - 0]}
\end{array} \\
\begin{array}{*{20}{l}}
{ = \dfrac{{2b}}{a}[\dfrac{{{a^2}e}}{2}\sqrt {1 - {e^2}} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}e]} \\
{ = \dfrac{{2b}}{a}(\dfrac{{{a^2}}}{2})[e\sqrt {1 - {e^2}} + {{\sin }^{ - 1}}e]} \\
{ = ab[e\sqrt {1 - {e^2}} + {{\sin }^{ - 1}}e]}
\end{array} \\
\end{gathered} \]
Required Area bounded by the ellipse \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\] and the ordinates $x = 0$and $x = ae$
\[ = ab[e\sqrt {1 - {e^2}} + {\sin ^{ - 1}}e]\]
Note: The required area can also be found by integrating the entire shaded area QOABCD instead of finding $2 \times $Area of QOCD. It would be a little lengthier and more unnecessary because the given ellipse is symmetrical about the origin.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Why was the Vernacular Press Act passed by British class 11 social science CBSE

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

What steps did the French revolutionaries take to create class 11 social science CBSE

How did silk routes link the world Explain with three class 11 social science CBSE

What are the various challenges faced by political class 11 social science CBSE
