Answer
Verified
492.9k+ views
Hint: Simplify the given ellipse equation and integrate within the given ordinate limits to find the area.
An ellipse of the form \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\] will meet the X-axis at (a, 0) and the Y-axis at (0, b). Let these points be P (a,0) and Q (0, b). It is symmetrical about the axes.
The ordinates given are $x = 0$and $x = ae$ which will be parallel to the Y-axis as shown in the figure.
The shaded area is the area bounded by the ellipse and the given ordinates.
Required area = Area of the shaded region
= $2 \times $Area of QOCD
=$2 \times \int_0^{ae} y dx$ …(1)
The given equation is \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\]. Let us find the value of y from this equation and substitute in equation (1).
$\begin{gathered}
\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 \\
\begin{array}{*{20}{l}}
\begin{gathered}
\dfrac{{{y^2}}}{{{b^2}}} = 1 - \dfrac{{{x^2}}}{{{a^2}}} \\
\dfrac{{{y^2}}}{{{b^2}}} = \dfrac{{{a^2} - {x^2}}}{{{a^2}}} \\
\end{gathered} \\
{{y^2} = \dfrac{{{b^2}}}{{{a^2}}}\left( {{a^2} - {x^2}} \right)} \\
{y = \pm \sqrt {\dfrac{{{b^2}}}{{{a^2}}}\left( {{a^2} - {x^2}} \right)} } \\
{y = \pm \dfrac{b}{a}\sqrt {\left( {{a^2} - {x^2}} \right)} }
\end{array} \\
\end{gathered} $
Since, the area in equation (1) which is the area of QOCD is in the 1st quadrant. Hence, the value of y will be positive.
Hence, $y = \dfrac{b}{a}\sqrt {\left( {{a^2} - {x^2}} \right)} $ …(2)
Substituting (2) in (1),
Required area =$2 \times \int_0^{ae} y dx$
\[\begin{array}{*{20}{l}}
{ = 2\mathop \smallint \limits_0^{ae} \dfrac{b}{a}\sqrt {{a^2} - {x^2}} dx} \\
{ = \dfrac{{2b}}{a}\mathop \smallint \limits_0^{ae} \sqrt {{a^2} - {x^2}} dx}
\end{array}\] (Since a and b are constants)
We know that, \[\mathop \smallint \nolimits^ \sqrt {{a^2} - {x^2}} dx = \dfrac{{x\sqrt {{a^2} - {x^2}} }}{2} + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}(\dfrac{x}{a}) + c\]
Using this in the previous step, we get
Required area = \[\dfrac{{2b}}{a}[\dfrac{1}{2}x\sqrt {{a^2} - {x^2}} + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}\dfrac{x}{a}]_0^{ae}\] \[\begin{gathered}
\begin{array}{*{20}{l}}
{ = \dfrac{{2b}}{a}[(\dfrac{{ae}}{2}\sqrt {{a^2} - {{(ae)}^2}} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}\dfrac{{ae}}{a}) - (\dfrac{0}{2}\sqrt {{a^2} - 0} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(\dfrac{0}{a}))]} \\
{ = \dfrac{{2b}}{a}[\dfrac{{ae}}{2}\sqrt {{a^2} - {a^2}{e^2}} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(e) - 0 - \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(0)]} \\
{ = \dfrac{{2b}}{a}[\dfrac{{ae}}{2} \cdot a\sqrt {1 - {e^2}} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}e - 0]}
\end{array} \\
\begin{array}{*{20}{l}}
{ = \dfrac{{2b}}{a}[\dfrac{{{a^2}e}}{2}\sqrt {1 - {e^2}} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}e]} \\
{ = \dfrac{{2b}}{a}(\dfrac{{{a^2}}}{2})[e\sqrt {1 - {e^2}} + {{\sin }^{ - 1}}e]} \\
{ = ab[e\sqrt {1 - {e^2}} + {{\sin }^{ - 1}}e]}
\end{array} \\
\end{gathered} \]
Required Area bounded by the ellipse \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\] and the ordinates $x = 0$and $x = ae$
\[ = ab[e\sqrt {1 - {e^2}} + {\sin ^{ - 1}}e]\]
Note: The required area can also be found by integrating the entire shaded area QOABCD instead of finding $2 \times $Area of QOCD. It would be a little lengthier and more unnecessary because the given ellipse is symmetrical about the origin.
An ellipse of the form \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\] will meet the X-axis at (a, 0) and the Y-axis at (0, b). Let these points be P (a,0) and Q (0, b). It is symmetrical about the axes.
The ordinates given are $x = 0$and $x = ae$ which will be parallel to the Y-axis as shown in the figure.
The shaded area is the area bounded by the ellipse and the given ordinates.
Required area = Area of the shaded region
= $2 \times $Area of QOCD
=$2 \times \int_0^{ae} y dx$ …(1)
The given equation is \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\]. Let us find the value of y from this equation and substitute in equation (1).
$\begin{gathered}
\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 \\
\begin{array}{*{20}{l}}
\begin{gathered}
\dfrac{{{y^2}}}{{{b^2}}} = 1 - \dfrac{{{x^2}}}{{{a^2}}} \\
\dfrac{{{y^2}}}{{{b^2}}} = \dfrac{{{a^2} - {x^2}}}{{{a^2}}} \\
\end{gathered} \\
{{y^2} = \dfrac{{{b^2}}}{{{a^2}}}\left( {{a^2} - {x^2}} \right)} \\
{y = \pm \sqrt {\dfrac{{{b^2}}}{{{a^2}}}\left( {{a^2} - {x^2}} \right)} } \\
{y = \pm \dfrac{b}{a}\sqrt {\left( {{a^2} - {x^2}} \right)} }
\end{array} \\
\end{gathered} $
Since, the area in equation (1) which is the area of QOCD is in the 1st quadrant. Hence, the value of y will be positive.
Hence, $y = \dfrac{b}{a}\sqrt {\left( {{a^2} - {x^2}} \right)} $ …(2)
Substituting (2) in (1),
Required area =$2 \times \int_0^{ae} y dx$
\[\begin{array}{*{20}{l}}
{ = 2\mathop \smallint \limits_0^{ae} \dfrac{b}{a}\sqrt {{a^2} - {x^2}} dx} \\
{ = \dfrac{{2b}}{a}\mathop \smallint \limits_0^{ae} \sqrt {{a^2} - {x^2}} dx}
\end{array}\] (Since a and b are constants)
We know that, \[\mathop \smallint \nolimits^ \sqrt {{a^2} - {x^2}} dx = \dfrac{{x\sqrt {{a^2} - {x^2}} }}{2} + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}(\dfrac{x}{a}) + c\]
Using this in the previous step, we get
Required area = \[\dfrac{{2b}}{a}[\dfrac{1}{2}x\sqrt {{a^2} - {x^2}} + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}\dfrac{x}{a}]_0^{ae}\] \[\begin{gathered}
\begin{array}{*{20}{l}}
{ = \dfrac{{2b}}{a}[(\dfrac{{ae}}{2}\sqrt {{a^2} - {{(ae)}^2}} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}\dfrac{{ae}}{a}) - (\dfrac{0}{2}\sqrt {{a^2} - 0} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(\dfrac{0}{a}))]} \\
{ = \dfrac{{2b}}{a}[\dfrac{{ae}}{2}\sqrt {{a^2} - {a^2}{e^2}} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(e) - 0 - \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(0)]} \\
{ = \dfrac{{2b}}{a}[\dfrac{{ae}}{2} \cdot a\sqrt {1 - {e^2}} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}e - 0]}
\end{array} \\
\begin{array}{*{20}{l}}
{ = \dfrac{{2b}}{a}[\dfrac{{{a^2}e}}{2}\sqrt {1 - {e^2}} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}e]} \\
{ = \dfrac{{2b}}{a}(\dfrac{{{a^2}}}{2})[e\sqrt {1 - {e^2}} + {{\sin }^{ - 1}}e]} \\
{ = ab[e\sqrt {1 - {e^2}} + {{\sin }^{ - 1}}e]}
\end{array} \\
\end{gathered} \]
Required Area bounded by the ellipse \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\] and the ordinates $x = 0$and $x = ae$
\[ = ab[e\sqrt {1 - {e^2}} + {\sin ^{ - 1}}e]\]
Note: The required area can also be found by integrating the entire shaded area QOABCD instead of finding $2 \times $Area of QOCD. It would be a little lengthier and more unnecessary because the given ellipse is symmetrical about the origin.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE