Find the area of the minor segment of a circle of radius 14cm, when its central angle is ${60^0}$.Also find the area of the corresponding major segment. $\left[ {use{\text{ }}\pi {\text{ = }}\dfrac{{22}}{7}} \right]$
Answer
Verified
508.5k+ views
Hint-Simply use formulae of area of segment. This is the case of a circular segment which is cut off from the rest of the circle.
Now it has been given that the radius of the circle is 14cm and the central angle of the minor segment is ${60^0}$.
Now using the formulae that area of segment = $\pi {r^2}\left( {\dfrac{c}{{360}}} \right)$ where c is the central angle of segment
Area of minor segment = $\dfrac{{22}}{7} \times {(14)^2} \times \dfrac{{60}}{{360}}$
$ \Rightarrow \dfrac{{22 \times 2 \times 14}}{6} = 102.67c{m^2}$
Area of minor segment + area of major segment =Total area of the circle…………………….. (1)
Total area of circle $ = \pi {r^2}$
$ \Rightarrow \dfrac{{22}}{7} \times {\left( {14} \right)^2} = 22 \times 2 \times 14 = 616c{m^2}$
Using equation (1) area of major segment is
Total area of circle – area of minor segment
$ \Rightarrow 616 - 102.67 = 513.33c{m^2}$
Note – Whenever we face such problems the key concept is having the basic understanding of the formula for the area of segment when the central angle corresponding to a segment is given.
Now it has been given that the radius of the circle is 14cm and the central angle of the minor segment is ${60^0}$.
Now using the formulae that area of segment = $\pi {r^2}\left( {\dfrac{c}{{360}}} \right)$ where c is the central angle of segment
Area of minor segment = $\dfrac{{22}}{7} \times {(14)^2} \times \dfrac{{60}}{{360}}$
$ \Rightarrow \dfrac{{22 \times 2 \times 14}}{6} = 102.67c{m^2}$
Area of minor segment + area of major segment =Total area of the circle…………………….. (1)
Total area of circle $ = \pi {r^2}$
$ \Rightarrow \dfrac{{22}}{7} \times {\left( {14} \right)^2} = 22 \times 2 \times 14 = 616c{m^2}$
Using equation (1) area of major segment is
Total area of circle – area of minor segment
$ \Rightarrow 616 - 102.67 = 513.33c{m^2}$
Note – Whenever we face such problems the key concept is having the basic understanding of the formula for the area of segment when the central angle corresponding to a segment is given.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Computer Science: Engaging Questions & Answers for Success
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
Assertion The planet Neptune appears blue in colour class 10 social science CBSE
The term disaster is derived from language AGreek BArabic class 10 social science CBSE
What is Commercial Farming ? What are its types ? Explain them with Examples
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Differentiate between natural and artificial ecosy class 10 biology CBSE