
Find the area of the minor segment of a circle of radius 14cm, when its central angle is ${60^0}$.Also find the area of the corresponding major segment. $\left[ {use{\text{ }}\pi {\text{ = }}\dfrac{{22}}{7}} \right]$
Answer
623.7k+ views
Hint-Simply use formulae of area of segment. This is the case of a circular segment which is cut off from the rest of the circle.
Now it has been given that the radius of the circle is 14cm and the central angle of the minor segment is ${60^0}$.
Now using the formulae that area of segment = $\pi {r^2}\left( {\dfrac{c}{{360}}} \right)$ where c is the central angle of segment
Area of minor segment = $\dfrac{{22}}{7} \times {(14)^2} \times \dfrac{{60}}{{360}}$
$ \Rightarrow \dfrac{{22 \times 2 \times 14}}{6} = 102.67c{m^2}$
Area of minor segment + area of major segment =Total area of the circle…………………….. (1)
Total area of circle $ = \pi {r^2}$
$ \Rightarrow \dfrac{{22}}{7} \times {\left( {14} \right)^2} = 22 \times 2 \times 14 = 616c{m^2}$
Using equation (1) area of major segment is
Total area of circle – area of minor segment
$ \Rightarrow 616 - 102.67 = 513.33c{m^2}$
Note – Whenever we face such problems the key concept is having the basic understanding of the formula for the area of segment when the central angle corresponding to a segment is given.
Now it has been given that the radius of the circle is 14cm and the central angle of the minor segment is ${60^0}$.
Now using the formulae that area of segment = $\pi {r^2}\left( {\dfrac{c}{{360}}} \right)$ where c is the central angle of segment
Area of minor segment = $\dfrac{{22}}{7} \times {(14)^2} \times \dfrac{{60}}{{360}}$
$ \Rightarrow \dfrac{{22 \times 2 \times 14}}{6} = 102.67c{m^2}$
Area of minor segment + area of major segment =Total area of the circle…………………….. (1)
Total area of circle $ = \pi {r^2}$
$ \Rightarrow \dfrac{{22}}{7} \times {\left( {14} \right)^2} = 22 \times 2 \times 14 = 616c{m^2}$
Using equation (1) area of major segment is
Total area of circle – area of minor segment
$ \Rightarrow 616 - 102.67 = 513.33c{m^2}$
Note – Whenever we face such problems the key concept is having the basic understanding of the formula for the area of segment when the central angle corresponding to a segment is given.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

