
Find the area of the triangle whose vertices are A (-3,-1), B (5,3), C (2,-8)
A. 34
B. 36
C. 38
D. 32
Answer
525.6k+ views
1 likes
Hint: We use the formula to find the area of a triangle when coordinates of vertices are given. The formula has been derived by finding the length of the base of the triangle and its height using the distance formula. Drawing the triangle also helps to understand the problem better.
Complete step-by-step answer:
We will first sketch the given triangle.
Let us label the vertex A as .
Label vertex B as .
Label vertex C as .
Given the coordinates of the vertices, the area of the triangle is given by the formula:
Substituting the values of the vertices, we get,
Thus, option C is the correct option.
Note: There is a chance of making a mistake while using the formula of the area of the triangle. The coordinates of each vertex must be noted properly. An alternate method is to use Heron’s formula to find the area. In this method we will first need to find the lengths of all the sides of the triangle. This can be done using distance formula. After that we find the semi perimeter of the triangle, which is half of the perimeter of the triangle. Afterwards, we substitute this in Heron’s formula.
If the lengths of the sides are a, b and c respectively, then the semi perimeter S is given by
.
The area A is given by:
.
While using Heron's formula, we must make sure we substitute the proper values in the formula. One must also watch out for any calculation mistakes while using the formula as square root is involved.
Complete step-by-step answer:
We will first sketch the given triangle.

Let us label the vertex A as
Label vertex B as
Label vertex C as
Given the coordinates of the vertices, the area of the triangle is given by the formula:
Substituting the values of the vertices, we get,
Thus, option C is the correct option.
Note: There is a chance of making a mistake while using the formula of the area of the triangle. The coordinates of each vertex must be noted properly. An alternate method is to use Heron’s formula to find the area. In this method we will first need to find the lengths of all the sides of the triangle. This can be done using distance formula. After that we find the semi perimeter of the triangle, which is half of the perimeter of the triangle. Afterwards, we substitute this in Heron’s formula.
If the lengths of the sides are a, b and c respectively, then the semi perimeter S is given by
The area A is given by:
While using Heron's formula, we must make sure we substitute the proper values in the formula. One must also watch out for any calculation mistakes while using the formula as square root is involved.
Latest Vedantu courses for you
Grade 10 | CBSE | SCHOOL | English
Vedantu 10 CBSE Pro Course - (2025-26)
School Full course for CBSE students
₹35,000 per year
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Who built the Grand Trunk Road AChandragupta Maurya class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light
