Answer
Verified
461.7k+ views
Hint: We need to find which kind of triangle it is. We can check if the triangle is right angle triangle or not by checking the Pythagoras theorem. The Pythagoras theorem says that ${{\left( \text{Hypotenuse} \right)}^{\text{2}}}\text{=}{{\left( \text{Base} \right)}^{\text{2}}}\text{+}{{\left( \text{Height} \right)}^{\text{2}}}$ . The hypotenuse is always the biggest side in the triangle.
Complete step-by-step answer:
If the triangle is right angle triangle then the area of the triangle is given by $A=\dfrac{1}{2}\times \text{Base }\!\!\times\!\!\text{ Height}$ .
We need to find the area of this triangle.
Let’s assume the triangle ABC with sides AB = 5cm, BC = 12cm, and AC = 13 cm.
Let’s first check whether the triangle is right angle triangle or not.
We can check this with the help of the Pythagoras theorem.
The Pythagoras theorem is only applicable for the right-angle triangle.
Therefore, if the Pythagoras theorem is satisfied then we can say that the triangle is right-angled.
The Pythagoras theorem says that ${{\left( \text{Hypotenuse} \right)}^{\text{2}}}\text{=}{{\left( \text{Base} \right)}^{\text{2}}}\text{+}{{\left( \text{Height} \right)}^{\text{2}}}$ .
The hypotenuse is always the biggest side in the triangle.
Substituting the values, we get,
$\begin{align}
& {{\left( 13 \right)}^{2}}={{\left( 5 \right)}^{2}}+{{\left( 12 \right)}^{2}} \\
& 169=25+144 \\
& 169=169 \\
\end{align}$
Thus, we can see that equality holds that means that the triangle ABC is right-angled.
As we can see that, $\angle ABC={{90}^{\circ }}$ ,
Therefore, the area of the right-angle triangle (A) is given by,
$A=\dfrac{1}{2}\times \text{Base }\!\!\times\!\!\text{ Height}........\text{(i)}$
We can say that Height = AB = 5cm and Base = BC = 12cm.
Substituting the value in equation (i), we get,
$\begin{align}
& A=\dfrac{1}{2}\times 5\times 12 \\
& =5\times 6 \\
& =30c{{m}^{2}}
\end{align}$
Therefore, the area of the triangle with sides 5cm, 12cm, 13cm is $30c{{m}^{2}}$.
Note: The calculation of the area of the right-angle triangle is easiest. In other cases, we need to drop the perpendicular on the base of the triangle and then calculate the area. In the right-angle triangle, one side is already perpendicular to one of the sides. We can also see that the 5, 12, 13 is a Pythagorean triplet, the other Pythagorean triplets are 3, 4, 5. This means that any triangle with sides of Pythagorean triplets is always a right angle triangle.
Complete step-by-step answer:
If the triangle is right angle triangle then the area of the triangle is given by $A=\dfrac{1}{2}\times \text{Base }\!\!\times\!\!\text{ Height}$ .
We need to find the area of this triangle.
Let’s assume the triangle ABC with sides AB = 5cm, BC = 12cm, and AC = 13 cm.
Let’s first check whether the triangle is right angle triangle or not.
We can check this with the help of the Pythagoras theorem.
The Pythagoras theorem is only applicable for the right-angle triangle.
Therefore, if the Pythagoras theorem is satisfied then we can say that the triangle is right-angled.
The Pythagoras theorem says that ${{\left( \text{Hypotenuse} \right)}^{\text{2}}}\text{=}{{\left( \text{Base} \right)}^{\text{2}}}\text{+}{{\left( \text{Height} \right)}^{\text{2}}}$ .
The hypotenuse is always the biggest side in the triangle.
Substituting the values, we get,
$\begin{align}
& {{\left( 13 \right)}^{2}}={{\left( 5 \right)}^{2}}+{{\left( 12 \right)}^{2}} \\
& 169=25+144 \\
& 169=169 \\
\end{align}$
Thus, we can see that equality holds that means that the triangle ABC is right-angled.
As we can see that, $\angle ABC={{90}^{\circ }}$ ,
Therefore, the area of the right-angle triangle (A) is given by,
$A=\dfrac{1}{2}\times \text{Base }\!\!\times\!\!\text{ Height}........\text{(i)}$
We can say that Height = AB = 5cm and Base = BC = 12cm.
Substituting the value in equation (i), we get,
$\begin{align}
& A=\dfrac{1}{2}\times 5\times 12 \\
& =5\times 6 \\
& =30c{{m}^{2}}
\end{align}$
Therefore, the area of the triangle with sides 5cm, 12cm, 13cm is $30c{{m}^{2}}$.
Note: The calculation of the area of the right-angle triangle is easiest. In other cases, we need to drop the perpendicular on the base of the triangle and then calculate the area. In the right-angle triangle, one side is already perpendicular to one of the sides. We can also see that the 5, 12, 13 is a Pythagorean triplet, the other Pythagorean triplets are 3, 4, 5. This means that any triangle with sides of Pythagorean triplets is always a right angle triangle.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE