Answer
Verified
497.7k+ views
Hint: To calculate the area of triangle, we use the formula,
Area = \[\dfrac{1}{2}\left[ {{x}_{1}}~\left( {{y}_{2-}}~{{y}_{3}}~ \right)+{{x}_{2}}~\left( {{y}_{3}}-{{y}_{1}}~ \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right]\]-- (1)
Where, $({{x}_{1}},{{y}_{1}}),({{x}_{2}},{{y}_{2}}),({{x}_{3}},{{y}_{3}})$are the coordinates of A, B and C.
Complete step-by-step answer:
We can calculate the area by using the area formula. One should however remember that since area is a positive quantity, we take the absolute value of the area we get from formula (1).
Thus, we get,
Area = \[\dfrac{1}{2}\left[ {{x}_{1}}~\left( {{y}_{2-}}~{{y}_{3}}~ \right)+{{x}_{2}}~\left( {{y}_{3}}-{{y}_{1}}~ \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right]\]
Now, we know the coordinates of A, B and C which are (-5, 7), (-4, -5) and (4, 5) respectively. These are put in place of $({{x}_{1}},{{y}_{1}}),({{x}_{2}},{{y}_{2}}),({{x}_{3}},{{y}_{3}})$. Here we have taken the order of$({{x}_{1}},{{y}_{1}}),({{x}_{2}},{{y}_{2}}),({{x}_{3}},{{y}_{3}})$ as A, B and C. However, one can also take any other order (say B, C and A). We should however be consistent while inserting the values. Now, we start solving,
Area = $\dfrac{1}{2}$[-5(-5-5) + {-4(5-7)} + 4{7-(-5)}]
Area = $\dfrac{1}{2}$[50+8+48]
Area = 53 square units.
Hence, the area of triangle ABC is 53 square units.
Note: While calculating the area of the triangle when the Cartesian coordinates are given, one can also proceed by first plotting the triangle on X-Y graph. This can help in identifying if the triangle is an equilateral triangle, isosceles triangle or right triangle. If we can identify that the triangle is one of them, we can easily calculate the area of the triangle, by using the respective formulas for these special types of triangles. This greatly reduces the time taken in calculating the area of the triangle. In case, the triangle is none of the above types of triangles, we can always use the normal formula in Cartesian coordinates to calculate the area.
Area = \[\dfrac{1}{2}\left[ {{x}_{1}}~\left( {{y}_{2-}}~{{y}_{3}}~ \right)+{{x}_{2}}~\left( {{y}_{3}}-{{y}_{1}}~ \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right]\]-- (1)
Where, $({{x}_{1}},{{y}_{1}}),({{x}_{2}},{{y}_{2}}),({{x}_{3}},{{y}_{3}})$are the coordinates of A, B and C.
Complete step-by-step answer:
We can calculate the area by using the area formula. One should however remember that since area is a positive quantity, we take the absolute value of the area we get from formula (1).
Thus, we get,
Area = \[\dfrac{1}{2}\left[ {{x}_{1}}~\left( {{y}_{2-}}~{{y}_{3}}~ \right)+{{x}_{2}}~\left( {{y}_{3}}-{{y}_{1}}~ \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right]\]
Now, we know the coordinates of A, B and C which are (-5, 7), (-4, -5) and (4, 5) respectively. These are put in place of $({{x}_{1}},{{y}_{1}}),({{x}_{2}},{{y}_{2}}),({{x}_{3}},{{y}_{3}})$. Here we have taken the order of$({{x}_{1}},{{y}_{1}}),({{x}_{2}},{{y}_{2}}),({{x}_{3}},{{y}_{3}})$ as A, B and C. However, one can also take any other order (say B, C and A). We should however be consistent while inserting the values. Now, we start solving,
Area = $\dfrac{1}{2}$[-5(-5-5) + {-4(5-7)} + 4{7-(-5)}]
Area = $\dfrac{1}{2}$[50+8+48]
Area = 53 square units.
Hence, the area of triangle ABC is 53 square units.
Note: While calculating the area of the triangle when the Cartesian coordinates are given, one can also proceed by first plotting the triangle on X-Y graph. This can help in identifying if the triangle is an equilateral triangle, isosceles triangle or right triangle. If we can identify that the triangle is one of them, we can easily calculate the area of the triangle, by using the respective formulas for these special types of triangles. This greatly reduces the time taken in calculating the area of the triangle. In case, the triangle is none of the above types of triangles, we can always use the normal formula in Cartesian coordinates to calculate the area.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Discuss the main reasons for poverty in India
Write a letter to the principal requesting him to grant class 10 english CBSE