
How do you find the asymptote(s) or hole(s) of $f\left( x \right) = \dfrac{{x + 3}}{{{x^2} - 9}}$ ?
Answer
550.2k+ views
Hint: First make sure the rational function is written in simplified (reduced) form.
Then, look for values that cause the denominator to be zero (and numerator to be zero); that is, we solve $d\left( c \right) = 0$ , where $d\left( x \right)$ is the denominator of $f\left( x \right)$ , and then evaluate $\mathop {\lim }\limits_{x \to {c^ - }} f\left( x \right)$ and $\mathop {\lim }\limits_{x \to {c^ + }} f\left( x \right)$ to ascertain the behavior of the function at $x = c$ .
To find the horizontal asymptotes we compute $\mathop {\lim }\limits_{x \to + \infty } f\left( x \right)$ and $\mathop {\lim }\limits_{x \to - \infty } f\left( x \right)$ .
If $\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L$ or $\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = L$ , then the line $y = L$ is a horizontal asymptote of the graph of $f$ .
Formula used: The line $x = c$ is a vertical asymptote of the graph of $f$ if either of the one-sided limits $\mathop {\lim }\limits_{x \to {c^ - }} f\left( x \right)$ or $\mathop {\lim }\limits_{x \to {c^ + }} f\left( x \right)$ is infinite.
The line $y = L$ is a horizontal asymptote of the graph of $f$ if
$\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L$ or $\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = L$
Complete step-by-step solution:
First make sure the rational function is written in simplified (reduced) form.
Because vertical asymptote for $f\left( x \right) = \dfrac{{x + 3}}{{{x^2} - 9}}$ occur at values of $c$ for which $\mathop {\lim }\limits_{x \to {c^ - }} f\left( x \right)$ or $\mathop {\lim }\limits_{x \to {c^ + }} f\left( x \right)$ is infinite, we look for values that cause the denominator to be zero (and numerator to be zero); that is, we solve $d\left( c \right) = 0$, where $d\left( x \right)$ is the denominator of $f\left( x \right)$, and then evaluate $\mathop {\lim }\limits_{x \to {c^ - }} f\left( x \right)$ and $\mathop {\lim }\limits_{x \to {c^ + }} f\left( x \right)$ to ascertain the behavior of the function at $x = c$.
To find the horizontal asymptotes we compute $\mathop {\lim }\limits_{x \to + \infty } f\left( x \right)$ and $\mathop {\lim }\limits_{x \to - \infty } f\left( x \right)$. If $\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L$ or $\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = L$, then the line $y = L$ is a horizontal asymptote of the graph of $f$.
Now, consider $f\left( x \right) = \dfrac{{x + 3}}{{{x^2} - 9}}$
We have to find its asymptote.
We can simplify the function using identity ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$.
Denominator can be simplified using this identity by putting $a = x$ and $b = 3$.
So, putting $a = x$ and $b = 3$in ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$.
$ \Rightarrow {x^2} - 9 = \left( {x - 3} \right)\left( {x + 3} \right)$
Now, putting this simplified version of ${x^2} - 9$ in $f\left( x \right) = \dfrac{{x + 3}}{{{x^2} - 9}}$.
$ \Rightarrow f\left( x \right) = \dfrac{{x + 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}$
Cancel out $\left( {x + 3} \right)$ from numerator and denominator.
$ \Rightarrow f\left( x \right) = \dfrac{1}{{x - 3}}$
Vertical Asymptotes:
We know that vertical asymptotes are found by setting the denominator equal to zero, because this is the value for which the function is undefined.
So, putting $x - 3 = 0$, to find vertical asymptotes of given function.
Thus, $x = 3$ is the value that causes division by zero, so we find $\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right)$ and $\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right)$ to ascertain the behavior of the function at $x = 3$.
Putting $f\left( x \right) = \dfrac{1}{{x - 3}}$in $\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right)$, we get
$ \Rightarrow \mathop {\lim }\limits_{x \to {3^ + }} \dfrac{1}{{x - 3}} = + \infty $
Putting $f\left( x \right) = \dfrac{1}{{x - 3}}$in $\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right)$, we get
$ \Rightarrow \mathop {\lim }\limits_{x \to {3^ - }} \dfrac{1}{{x - 3}} = - \infty $
This means that $x = 3$ is a vertical asymptote and the graph is moving downward as $x \to 3$ from the left and upward as $x \to 3$ from the right.
Horizontal Asymptotes:
To find the horizontal asymptotes we compute $\mathop {\lim }\limits_{x \to + \infty } f\left( x \right)$ and $\mathop {\lim }\limits_{x \to - \infty } f\left( x \right)$.
Putting $f\left( x \right) = \dfrac{1}{{x - 3}}$in $\mathop {\lim }\limits_{x \to + \infty } f\left( x \right)$, we get
$ \Rightarrow \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \dfrac{1}{{x - 3}}$
Dividing numerator and denominator by $x$, we get
$ \Rightarrow \mathop {\lim }\limits_{x \to + \infty } \dfrac{1}{{x - 3}} = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{\dfrac{1}{x}}}{{1 - \dfrac{3}{x}}}$
Now, by direct substituting and using $\dfrac{1}{\infty } = 0$, we get
$ \Rightarrow \mathop {\lim }\limits_{x \to + \infty } \dfrac{1}{{x - 3}} = 0$
Putting $f\left( x \right) = \dfrac{1}{{x - 3}}$in $\mathop {\lim }\limits_{x \to - \infty } f\left( x \right)$, we get
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \dfrac{1}{{x - 3}}$
Dividing numerator and denominator by $x$, we get
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{1}{{x - 3}} = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\dfrac{1}{x}}}{{1 - \dfrac{3}{x}}}$
Now, by direct substituting and using $\dfrac{1}{\infty } = 0$, we get
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{1}{{x - 3}} = 0$
So, $\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 0$ and $\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 0$.
Thus, $y = 0$ is a horizontal asymptote.
Therefore, $f\left( x \right) = \dfrac{{x + 3}}{{{x^2} - 9}}$ has vertical asymptote at $x = 3$ and horizontal asymptote at $y = 0$.
Note: We can also find the horizontal and vertical asymptotes by looking at the graph of function
$ \Rightarrow f\left( x \right) = \dfrac{{x + 3}}{{{x^2} - 9}}$.
Therefore, $f\left( x \right) = \dfrac{{x + 3}}{{{x^2} - 9}}$ has vertical asymptote at $x = 3$ and horizontal asymptote at $y = 0$.
Then, look for values that cause the denominator to be zero (and numerator to be zero); that is, we solve $d\left( c \right) = 0$ , where $d\left( x \right)$ is the denominator of $f\left( x \right)$ , and then evaluate $\mathop {\lim }\limits_{x \to {c^ - }} f\left( x \right)$ and $\mathop {\lim }\limits_{x \to {c^ + }} f\left( x \right)$ to ascertain the behavior of the function at $x = c$ .
To find the horizontal asymptotes we compute $\mathop {\lim }\limits_{x \to + \infty } f\left( x \right)$ and $\mathop {\lim }\limits_{x \to - \infty } f\left( x \right)$ .
If $\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L$ or $\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = L$ , then the line $y = L$ is a horizontal asymptote of the graph of $f$ .
Formula used: The line $x = c$ is a vertical asymptote of the graph of $f$ if either of the one-sided limits $\mathop {\lim }\limits_{x \to {c^ - }} f\left( x \right)$ or $\mathop {\lim }\limits_{x \to {c^ + }} f\left( x \right)$ is infinite.
The line $y = L$ is a horizontal asymptote of the graph of $f$ if
$\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L$ or $\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = L$
Complete step-by-step solution:
First make sure the rational function is written in simplified (reduced) form.
Because vertical asymptote for $f\left( x \right) = \dfrac{{x + 3}}{{{x^2} - 9}}$ occur at values of $c$ for which $\mathop {\lim }\limits_{x \to {c^ - }} f\left( x \right)$ or $\mathop {\lim }\limits_{x \to {c^ + }} f\left( x \right)$ is infinite, we look for values that cause the denominator to be zero (and numerator to be zero); that is, we solve $d\left( c \right) = 0$, where $d\left( x \right)$ is the denominator of $f\left( x \right)$, and then evaluate $\mathop {\lim }\limits_{x \to {c^ - }} f\left( x \right)$ and $\mathop {\lim }\limits_{x \to {c^ + }} f\left( x \right)$ to ascertain the behavior of the function at $x = c$.
To find the horizontal asymptotes we compute $\mathop {\lim }\limits_{x \to + \infty } f\left( x \right)$ and $\mathop {\lim }\limits_{x \to - \infty } f\left( x \right)$. If $\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L$ or $\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = L$, then the line $y = L$ is a horizontal asymptote of the graph of $f$.
Now, consider $f\left( x \right) = \dfrac{{x + 3}}{{{x^2} - 9}}$
We have to find its asymptote.
We can simplify the function using identity ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$.
Denominator can be simplified using this identity by putting $a = x$ and $b = 3$.
So, putting $a = x$ and $b = 3$in ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$.
$ \Rightarrow {x^2} - 9 = \left( {x - 3} \right)\left( {x + 3} \right)$
Now, putting this simplified version of ${x^2} - 9$ in $f\left( x \right) = \dfrac{{x + 3}}{{{x^2} - 9}}$.
$ \Rightarrow f\left( x \right) = \dfrac{{x + 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}$
Cancel out $\left( {x + 3} \right)$ from numerator and denominator.
$ \Rightarrow f\left( x \right) = \dfrac{1}{{x - 3}}$
Vertical Asymptotes:
We know that vertical asymptotes are found by setting the denominator equal to zero, because this is the value for which the function is undefined.
So, putting $x - 3 = 0$, to find vertical asymptotes of given function.
Thus, $x = 3$ is the value that causes division by zero, so we find $\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right)$ and $\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right)$ to ascertain the behavior of the function at $x = 3$.
Putting $f\left( x \right) = \dfrac{1}{{x - 3}}$in $\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right)$, we get
$ \Rightarrow \mathop {\lim }\limits_{x \to {3^ + }} \dfrac{1}{{x - 3}} = + \infty $
Putting $f\left( x \right) = \dfrac{1}{{x - 3}}$in $\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right)$, we get
$ \Rightarrow \mathop {\lim }\limits_{x \to {3^ - }} \dfrac{1}{{x - 3}} = - \infty $
This means that $x = 3$ is a vertical asymptote and the graph is moving downward as $x \to 3$ from the left and upward as $x \to 3$ from the right.
Horizontal Asymptotes:
To find the horizontal asymptotes we compute $\mathop {\lim }\limits_{x \to + \infty } f\left( x \right)$ and $\mathop {\lim }\limits_{x \to - \infty } f\left( x \right)$.
Putting $f\left( x \right) = \dfrac{1}{{x - 3}}$in $\mathop {\lim }\limits_{x \to + \infty } f\left( x \right)$, we get
$ \Rightarrow \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \dfrac{1}{{x - 3}}$
Dividing numerator and denominator by $x$, we get
$ \Rightarrow \mathop {\lim }\limits_{x \to + \infty } \dfrac{1}{{x - 3}} = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{\dfrac{1}{x}}}{{1 - \dfrac{3}{x}}}$
Now, by direct substituting and using $\dfrac{1}{\infty } = 0$, we get
$ \Rightarrow \mathop {\lim }\limits_{x \to + \infty } \dfrac{1}{{x - 3}} = 0$
Putting $f\left( x \right) = \dfrac{1}{{x - 3}}$in $\mathop {\lim }\limits_{x \to - \infty } f\left( x \right)$, we get
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \dfrac{1}{{x - 3}}$
Dividing numerator and denominator by $x$, we get
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{1}{{x - 3}} = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\dfrac{1}{x}}}{{1 - \dfrac{3}{x}}}$
Now, by direct substituting and using $\dfrac{1}{\infty } = 0$, we get
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{1}{{x - 3}} = 0$
So, $\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 0$ and $\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 0$.
Thus, $y = 0$ is a horizontal asymptote.
Therefore, $f\left( x \right) = \dfrac{{x + 3}}{{{x^2} - 9}}$ has vertical asymptote at $x = 3$ and horizontal asymptote at $y = 0$.
Note: We can also find the horizontal and vertical asymptotes by looking at the graph of function
$ \Rightarrow f\left( x \right) = \dfrac{{x + 3}}{{{x^2} - 9}}$.
Therefore, $f\left( x \right) = \dfrac{{x + 3}}{{{x^2} - 9}}$ has vertical asymptote at $x = 3$ and horizontal asymptote at $y = 0$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

