Answer
Verified
497.4k+ views
Hint: For solving the question, we make use of concepts of binomial theorem along with permutations and combinations. Firstly, we try to find the number of ways in which we can arrange 3 a, 3 b and 1 c (since we have to find the coefficient of ${{a}^{3}}{{b}^{3}}c$). Next, we multiply this by the coefficient in the expression \[{{(2a+b+3c)}^{7}}\] corresponding to ${{a}^{3}}{{b}^{3}}c$.
Complete step-by-step answer:
We first find the number of combinations of arranging 3 a, 3 b and 1c. We have 7 terms. Thus, in general if we have 7 different terms, the total combinations would be 7! =5040. However, if we have some object of the same type, the number of combinations would be less since now we have identical objects and they would be treated as the same objects. To explain, if we have n objects with a objects of same type and b objects of same type (for aFor the number of combinations for arranging 3 a, 3 b and 1c, we have,
= $\dfrac{7!}{3!3!1!}$ -- (1)
This is for the term ${{a}^{3}}{{b}^{3}}c$. However, in the problem, we have \[{{(2a+b+3c)}^{7}}\]. Thus, we would have ${{(2a)}^{3}}{{b}^{3}}(3c)$ term. Thus, apart from the number of combination from (1), we would have to multiply by ${{2}^{3}}\times {{1}^{3}}\times 3$=24 [since, ${{(2a)}^{3}}{{b}^{3}}(3c)=({{2}^{3}}({{1}^{3}})(3))({{a}^{3}}{{b}^{3}}c)$, thus we also have to multiply by ${{2}^{3}}\times {{1}^{3}}\times 3$]. Now, finally, we combine this result with (1), we have,
= $\dfrac{7!}{3!3!1!}$$\times $24
=3360
Hence, the coefficient of ${{a}^{3}}{{b}^{3}}c$ is 3360.
Note: Finding the coefficient in a binomial theorem expansion requires a proper knowledge about permutations and combinations along with necessary expansion properties of the binomial theorem. In solving questions related to the above problem, we have a general formula to find the coefficient, we have, ${{(pa+qb+rc)}^{n}}$. To find, coefficient of ${{a}^{x}}{{b}^{y}}{{c}^{z}}$, the formula is $\dfrac{n!}{x!y!z!}\times ({{p}^{x}}{{q}^{y}}{{r}^{z}})$.
Complete step-by-step answer:
We first find the number of combinations of arranging 3 a, 3 b and 1c. We have 7 terms. Thus, in general if we have 7 different terms, the total combinations would be 7! =5040. However, if we have some object of the same type, the number of combinations would be less since now we have identical objects and they would be treated as the same objects. To explain, if we have n objects with a objects of same type and b objects of same type (for a
= $\dfrac{7!}{3!3!1!}$ -- (1)
This is for the term ${{a}^{3}}{{b}^{3}}c$. However, in the problem, we have \[{{(2a+b+3c)}^{7}}\]. Thus, we would have ${{(2a)}^{3}}{{b}^{3}}(3c)$ term. Thus, apart from the number of combination from (1), we would have to multiply by ${{2}^{3}}\times {{1}^{3}}\times 3$=24 [since, ${{(2a)}^{3}}{{b}^{3}}(3c)=({{2}^{3}}({{1}^{3}})(3))({{a}^{3}}{{b}^{3}}c)$, thus we also have to multiply by ${{2}^{3}}\times {{1}^{3}}\times 3$]. Now, finally, we combine this result with (1), we have,
= $\dfrac{7!}{3!3!1!}$$\times $24
=3360
Hence, the coefficient of ${{a}^{3}}{{b}^{3}}c$ is 3360.
Note: Finding the coefficient in a binomial theorem expansion requires a proper knowledge about permutations and combinations along with necessary expansion properties of the binomial theorem. In solving questions related to the above problem, we have a general formula to find the coefficient, we have, ${{(pa+qb+rc)}^{n}}$. To find, coefficient of ${{a}^{x}}{{b}^{y}}{{c}^{z}}$, the formula is $\dfrac{n!}{x!y!z!}\times ({{p}^{x}}{{q}^{y}}{{r}^{z}})$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE