Answer
Verified
471k+ views
Hint: First we should expand the expansion \[{{\left( 1-x \right)}^{16}}\]. We know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\]. By using this formula, we should expand the expansion \[{{\left( 1-x \right)}^{16}}\]. Now we should expand the expansion \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\]. Now we should separate the coefficients of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] and this should be written in the form of \[1+ax+b{{x}^{2}}+c{{x}^{3}}+.......\]. Now we should write the coefficient of x. We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]. Now, we should use this formula, to find the coefficient of x.
Complete step-by-step answer:
Before solving the question, we should know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\].
From the question, it is given that we should find the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\].
We know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\]
\[\Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( 1-3x+7{{x}^{2}} \right)\left( 1{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right)\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3x\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ +7}{{\text{x}}^{2}}\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3\left( ^{16}{{C}_{0}}x{{-}^{16}}{{C}_{1}}{{x}^{2}}{{+}^{16}}{{C}_{2}}{{x}^{3}}{{-}^{16}}{{C}_{3}}{{x}^{4}}{{+}^{16}}{{C}_{4}}{{x}^{5}}-...........{{+}^{16}}{{C}_{16}}{{x}^{17}} \right) \\
& \text{ +7}\left( ^{16}{{C}_{0}}{{x}^{2}}{{-}^{16}}{{C}_{1}}{{x}^{3}}{{+}^{16}}{{C}_{2}}{{x}^{4}}{{-}^{16}}{{C}_{3}}{{x}^{5}}{{+}^{16}}{{C}_{4}}{{x}^{6}}-...........{{+}^{16}}{{C}_{16}}{{x}^{18}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}} \right)-\left( ^{16}{{C}_{1}}+{{3}^{16}}{{C}_{0}} \right)x+\left( ^{16}{{C}_{2}}+{{3}^{16}}{{C}_{1}}+{{7}^{16}}{{C}_{0}} \right){{x}^{2}}-\left( ^{16}{{C}_{3}}+{{3}^{16}}{{C}_{2}}+{{7}^{16}}{{C}_{1}} \right){{x}^{3}} \\
& \text{ }+\left( ^{16}{{C}_{4}}+{{3}^{16}}{{C}_{4}}+{{7}^{16}}{{C}_{2}} \right){{x}^{4}}-......-\left( ^{16}{{C}_{16}}+{{3}^{16}}{{C}_{15}}+{{7}^{16}}{{C}_{14}} \right){{x}^{16}} \\
& \text{ +}\left( {{3}^{16}}{{C}_{16}}+{{7}^{16}}{{C}_{15}} \right){{x}^{17}}-\left( {{7}^{16}}{{C}_{15}} \right){{x}^{18}} \\
\end{align}\]From the question, it is clear that we should find the coefficient of x.
So, let us assume the coefficient of x is equal to T.
\[\Rightarrow T=\left( -1 \right)\left( ^{16}{{C}_{1}}+{{3}^{16}}{{C}_{0}} \right)\]
We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16!}{0!\left( 16-1 \right)!}+3\left( \dfrac{16!}{0!\left( 16-0 \right)!} \right) \right) \\
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16!}{\left( 15 \right)!}+3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16.15!}{\left( 15 \right)!}+3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
& \Rightarrow T=-1\left( 16+3\left( 1 \right) \right) \\
& \Rightarrow T=-1\left( 16+3 \right) \\
& \Rightarrow T=-19......(1) \\
\end{align}\]
So, from equation (1) it is clear that the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] is equal to -19.
Note: Students may have a misconception that \[{{\left( 1-x \right)}^{n}}=1{{+}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{+}^{n}}{{C}_{3}}{{x}^{3}}+......{{+}^{n}}{{C}_{r}}{{x}^{r}}+.....{{+}^{n}}{{C}_{n}}{{x}^{n}}\]. If this misconception is followed, then we will get a wrong answer as shown below:
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3x\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ +7}{{\text{x}}^{2}}\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3\left( ^{16}{{C}_{0}}x{{+}^{16}}{{C}_{1}}{{x}^{2}}{{+}^{16}}{{C}_{2}}{{x}^{3}}{{+}^{16}}{{C}_{3}}{{x}^{4}}{{+}^{16}}{{C}_{4}}{{x}^{5}}+...........{{+}^{16}}{{C}_{16}}{{x}^{17}} \right) \\
& \text{ +7}\left( ^{16}{{C}_{0}}{{x}^{2}}{{+}^{16}}{{C}_{1}}{{x}^{3}}{{+}^{16}}{{C}_{2}}{{x}^{4}}{{+}^{16}}{{C}_{3}}{{x}^{5}}{{+}^{16}}{{C}_{4}}{{x}^{6}}+...........{{+}^{16}}{{C}_{16}}{{x}^{18}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}} \right)+\left( ^{16}{{C}_{1}}-{{3}^{16}}{{C}_{0}} \right)x+\left( ^{16}{{C}_{2}}-{{3}^{16}}{{C}_{1}}+{{7}^{16}}{{C}_{0}} \right){{x}^{2}}+\left( ^{16}{{C}_{3}}-{{3}^{16}}{{C}_{2}}+{{7}^{16}}{{C}_{1}} \right){{x}^{3}} \\
& \text{ }+\left( ^{16}{{C}_{4}}-{{3}^{16}}{{C}_{4}}+{{7}^{16}}{{C}_{2}} \right){{x}^{4}}+......+\left( ^{16}{{C}_{16}}-{{3}^{16}}{{C}_{15}}+{{7}^{16}}{{C}_{14}} \right){{x}^{16}} \\
& \text{ +}\left( -{{3}^{16}}{{C}_{16}}+{{7}^{16}}{{C}_{15}} \right){{x}^{17}}+\left( {{7}^{16}}{{C}_{15}} \right){{x}^{18}} \\
\end{align}\]
From the question, it is clear that we should find the coefficient of x.
So, let us assume the coefficient of x is equal to T.
\[\Rightarrow T=\left( ^{16}{{C}_{1}}-{{3}^{16}}{{C}_{0}} \right)\]
We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& \Rightarrow T=\left( \dfrac{16!}{0!\left( 16-1 \right)!}-3\left( \dfrac{16!}{0!\left( 16-0 \right)!} \right) \right) \\
& \Rightarrow T=\left( \dfrac{16!}{\left( 15 \right)!}-3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow T=\left( \dfrac{16.15!}{\left( 15 \right)!}-3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
& \Rightarrow T=\left( 16-3\left( 1 \right) \right) \\
& \Rightarrow T=\left( 16-3 \right) \\
& \Rightarrow T=13......(1) \\
\end{align}\]
So, from equation (1) it is clear that the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] is equal to 13.
But we know that the coefficient of x is equal to -19 but we got the coefficient of x is equal to 13. So, this misconception should be avoided.
Complete step-by-step answer:
Before solving the question, we should know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\].
From the question, it is given that we should find the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\].
We know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\]
\[\Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( 1-3x+7{{x}^{2}} \right)\left( 1{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right)\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3x\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ +7}{{\text{x}}^{2}}\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3\left( ^{16}{{C}_{0}}x{{-}^{16}}{{C}_{1}}{{x}^{2}}{{+}^{16}}{{C}_{2}}{{x}^{3}}{{-}^{16}}{{C}_{3}}{{x}^{4}}{{+}^{16}}{{C}_{4}}{{x}^{5}}-...........{{+}^{16}}{{C}_{16}}{{x}^{17}} \right) \\
& \text{ +7}\left( ^{16}{{C}_{0}}{{x}^{2}}{{-}^{16}}{{C}_{1}}{{x}^{3}}{{+}^{16}}{{C}_{2}}{{x}^{4}}{{-}^{16}}{{C}_{3}}{{x}^{5}}{{+}^{16}}{{C}_{4}}{{x}^{6}}-...........{{+}^{16}}{{C}_{16}}{{x}^{18}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}} \right)-\left( ^{16}{{C}_{1}}+{{3}^{16}}{{C}_{0}} \right)x+\left( ^{16}{{C}_{2}}+{{3}^{16}}{{C}_{1}}+{{7}^{16}}{{C}_{0}} \right){{x}^{2}}-\left( ^{16}{{C}_{3}}+{{3}^{16}}{{C}_{2}}+{{7}^{16}}{{C}_{1}} \right){{x}^{3}} \\
& \text{ }+\left( ^{16}{{C}_{4}}+{{3}^{16}}{{C}_{4}}+{{7}^{16}}{{C}_{2}} \right){{x}^{4}}-......-\left( ^{16}{{C}_{16}}+{{3}^{16}}{{C}_{15}}+{{7}^{16}}{{C}_{14}} \right){{x}^{16}} \\
& \text{ +}\left( {{3}^{16}}{{C}_{16}}+{{7}^{16}}{{C}_{15}} \right){{x}^{17}}-\left( {{7}^{16}}{{C}_{15}} \right){{x}^{18}} \\
\end{align}\]From the question, it is clear that we should find the coefficient of x.
So, let us assume the coefficient of x is equal to T.
\[\Rightarrow T=\left( -1 \right)\left( ^{16}{{C}_{1}}+{{3}^{16}}{{C}_{0}} \right)\]
We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16!}{0!\left( 16-1 \right)!}+3\left( \dfrac{16!}{0!\left( 16-0 \right)!} \right) \right) \\
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16!}{\left( 15 \right)!}+3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16.15!}{\left( 15 \right)!}+3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
& \Rightarrow T=-1\left( 16+3\left( 1 \right) \right) \\
& \Rightarrow T=-1\left( 16+3 \right) \\
& \Rightarrow T=-19......(1) \\
\end{align}\]
So, from equation (1) it is clear that the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] is equal to -19.
Note: Students may have a misconception that \[{{\left( 1-x \right)}^{n}}=1{{+}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{+}^{n}}{{C}_{3}}{{x}^{3}}+......{{+}^{n}}{{C}_{r}}{{x}^{r}}+.....{{+}^{n}}{{C}_{n}}{{x}^{n}}\]. If this misconception is followed, then we will get a wrong answer as shown below:
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3x\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ +7}{{\text{x}}^{2}}\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3\left( ^{16}{{C}_{0}}x{{+}^{16}}{{C}_{1}}{{x}^{2}}{{+}^{16}}{{C}_{2}}{{x}^{3}}{{+}^{16}}{{C}_{3}}{{x}^{4}}{{+}^{16}}{{C}_{4}}{{x}^{5}}+...........{{+}^{16}}{{C}_{16}}{{x}^{17}} \right) \\
& \text{ +7}\left( ^{16}{{C}_{0}}{{x}^{2}}{{+}^{16}}{{C}_{1}}{{x}^{3}}{{+}^{16}}{{C}_{2}}{{x}^{4}}{{+}^{16}}{{C}_{3}}{{x}^{5}}{{+}^{16}}{{C}_{4}}{{x}^{6}}+...........{{+}^{16}}{{C}_{16}}{{x}^{18}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}} \right)+\left( ^{16}{{C}_{1}}-{{3}^{16}}{{C}_{0}} \right)x+\left( ^{16}{{C}_{2}}-{{3}^{16}}{{C}_{1}}+{{7}^{16}}{{C}_{0}} \right){{x}^{2}}+\left( ^{16}{{C}_{3}}-{{3}^{16}}{{C}_{2}}+{{7}^{16}}{{C}_{1}} \right){{x}^{3}} \\
& \text{ }+\left( ^{16}{{C}_{4}}-{{3}^{16}}{{C}_{4}}+{{7}^{16}}{{C}_{2}} \right){{x}^{4}}+......+\left( ^{16}{{C}_{16}}-{{3}^{16}}{{C}_{15}}+{{7}^{16}}{{C}_{14}} \right){{x}^{16}} \\
& \text{ +}\left( -{{3}^{16}}{{C}_{16}}+{{7}^{16}}{{C}_{15}} \right){{x}^{17}}+\left( {{7}^{16}}{{C}_{15}} \right){{x}^{18}} \\
\end{align}\]
From the question, it is clear that we should find the coefficient of x.
So, let us assume the coefficient of x is equal to T.
\[\Rightarrow T=\left( ^{16}{{C}_{1}}-{{3}^{16}}{{C}_{0}} \right)\]
We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& \Rightarrow T=\left( \dfrac{16!}{0!\left( 16-1 \right)!}-3\left( \dfrac{16!}{0!\left( 16-0 \right)!} \right) \right) \\
& \Rightarrow T=\left( \dfrac{16!}{\left( 15 \right)!}-3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow T=\left( \dfrac{16.15!}{\left( 15 \right)!}-3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
& \Rightarrow T=\left( 16-3\left( 1 \right) \right) \\
& \Rightarrow T=\left( 16-3 \right) \\
& \Rightarrow T=13......(1) \\
\end{align}\]
So, from equation (1) it is clear that the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] is equal to 13.
But we know that the coefficient of x is equal to -19 but we got the coefficient of x is equal to 13. So, this misconception should be avoided.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE