
Find the coefficient of ${x^5}$ in ${(x + 3)}^8$.
Answer
594.3k+ views
Hint: The knowledge of binomial theorem and expansion is required to solve this problem. The binomial expansion is given by-
${\left( {{\text{a}} + bx} \right)^{\text{n}}} = {}_{}^{\text{n}}{\text{C}}_0^{}{{\text{a}}^{\text{n}}} + {}_{}^{\text{n}}{\text{C}}_1^{}{{\text{a}}^{{\text{n}} - 1}}{{\text{b}}^1}{\text{x}} + ... + {}_{}^{\text{n}}{\text{C}}_{\text{r}}^{}{{\text{a}}^{{\text{n}} - {\text{r}}}}{{\text{b}}^{\text{r}}} + ... + {}_{}^{\text{n}}{\text{C}}_{\text{n}}^{}{{\text{b}}^{\text{n}}}$.
Complete step-by-step solution -
We have to find the coefficient of ${x^5}$ in ${(x + 3)}^8$.
The formula for the ${(r)}^{th}$ general term in a binomial expansion is given as-
${{\text{T}}_{{\text{r}} + 1}} = {}_{}^{\text{n}}{\text{C}}_{\text{r}}^{}{{\text{a}}^{{\text{n}} - {\text{r}}}}{{\text{b}}^{\text{r}}}{{\text{x}}^{\text{r}}}$
Coefficient of $x^5$ = ${}_{}^8{\text{C}}_5^{}{3^{8 - 5}}{1^5}$
Coefficient of $x^5$ = ${}_{}^8{\text{C}}_5^{}{3^3}$
$$=\dfrac{8!}{3!5!}\times 3^3=\dfrac{6\times7\times 8}2\times 3^2\\$$
=1512
Hence, the coefficient of $x^5$ in ${(x + 3)}^8$ is 1512. This is the required answer.
Note: Some students may get ${}_{}^8{\text{C}}_3^{}$ in their formula instead of ${}_{}^8{\text{C}}_5^{}$. But they should not get confused with it. This is a property of combination that-
${}_{}^{\text{n}}{\text{C}}_{\text{r}}^{} = {}_{}^{\text{n}}{\text{C}}_{{\text{n - r}}}^{}$
$$\dfrac{\mathrm n!}{\left(\mathrm n-\mathrm r\right)!\mathrm r!}=\dfrac{\mathrm n!}{\left(\mathrm n-\mathrm n+\mathrm r\right)!\left(\mathrm n-\mathrm r\right)!}$$
${\left( {{\text{a}} + bx} \right)^{\text{n}}} = {}_{}^{\text{n}}{\text{C}}_0^{}{{\text{a}}^{\text{n}}} + {}_{}^{\text{n}}{\text{C}}_1^{}{{\text{a}}^{{\text{n}} - 1}}{{\text{b}}^1}{\text{x}} + ... + {}_{}^{\text{n}}{\text{C}}_{\text{r}}^{}{{\text{a}}^{{\text{n}} - {\text{r}}}}{{\text{b}}^{\text{r}}} + ... + {}_{}^{\text{n}}{\text{C}}_{\text{n}}^{}{{\text{b}}^{\text{n}}}$.
Complete step-by-step solution -
We have to find the coefficient of ${x^5}$ in ${(x + 3)}^8$.
The formula for the ${(r)}^{th}$ general term in a binomial expansion is given as-
${{\text{T}}_{{\text{r}} + 1}} = {}_{}^{\text{n}}{\text{C}}_{\text{r}}^{}{{\text{a}}^{{\text{n}} - {\text{r}}}}{{\text{b}}^{\text{r}}}{{\text{x}}^{\text{r}}}$
Coefficient of $x^5$ = ${}_{}^8{\text{C}}_5^{}{3^{8 - 5}}{1^5}$
Coefficient of $x^5$ = ${}_{}^8{\text{C}}_5^{}{3^3}$
$$=\dfrac{8!}{3!5!}\times 3^3=\dfrac{6\times7\times 8}2\times 3^2\\$$
=1512
Hence, the coefficient of $x^5$ in ${(x + 3)}^8$ is 1512. This is the required answer.
Note: Some students may get ${}_{}^8{\text{C}}_3^{}$ in their formula instead of ${}_{}^8{\text{C}}_5^{}$. But they should not get confused with it. This is a property of combination that-
${}_{}^{\text{n}}{\text{C}}_{\text{r}}^{} = {}_{}^{\text{n}}{\text{C}}_{{\text{n - r}}}^{}$
$$\dfrac{\mathrm n!}{\left(\mathrm n-\mathrm r\right)!\mathrm r!}=\dfrac{\mathrm n!}{\left(\mathrm n-\mathrm n+\mathrm r\right)!\left(\mathrm n-\mathrm r\right)!}$$
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

