Answer
Verified
396k+ views
Hint: We first take the coordinates of the point in which the straight lines $y={{m}_{1}}x+{{c}_{1}}$, $y={{m}_{2}}x+{{c}_{2}}$, $y={{m}_{3}}x+{{c}_{3}}$ meet each other. We put the values and then using the condition of the coefficient matrix of the equations’ having determinant value 0, we find the required condition.
Complete step by step answer:
We assume the point $\left( h,k \right)$ in which the straight lines $y={{m}_{1}}x+{{c}_{1}}$, $y={{m}_{2}}x+{{c}_{2}}$, $y={{m}_{3}}x+{{c}_{3}}$ meet each other.
It means that the point $\left( h,k \right)$ lies on every line of $y={{m}_{1}}x+{{c}_{1}}$, $y={{m}_{2}}x+{{c}_{2}}$, $y={{m}_{3}}x+{{c}_{3}}$.
The point satisfies the equations.
Therefore, $k={{m}_{1}}h+{{c}_{1}}$, $k={{m}_{2}}h+{{c}_{2}}$, $k={{m}_{3}}h+{{c}_{3}}$.
We convert them into equations into side of the equality.
$k-{{m}_{1}}h-{{c}_{1}}=0$, $k-{{m}_{2}}h-{{c}_{2}}=0$, $k-{{m}_{3}}h-{{c}_{3}}=0$.
The three lines represents the same point with area being 0 when the coefficient matrix of the equations has determinant value 0 which means the matrix is singular matrix.
Therefore, $\left| \begin{matrix}
1 & -{{m}_{1}} & -{{c}_{1}} \\
1 & -{{m}_{2}} & -{{c}_{2}} \\
1 & -{{m}_{3}} & -{{c}_{3}} \\
\end{matrix} \right|=0$.
We now need to simplify the determinant by expanding through the first column.
$\left| \begin{matrix}
1 & -{{m}_{1}} & -{{c}_{1}} \\
1 & -{{m}_{2}} & -{{c}_{2}} \\
1 & -{{m}_{3}} & -{{c}_{3}} \\
\end{matrix} \right|=\left| \begin{matrix}
1 & {{m}_{1}} & {{c}_{1}} \\
1 & {{m}_{2}} & {{c}_{2}} \\
1 & {{m}_{3}} & {{c}_{3}} \\
\end{matrix} \right|$
$\left| \begin{matrix}
1 & {{m}_{1}} & {{c}_{1}} \\
1 & {{m}_{2}} & {{c}_{2}} \\
1 & {{m}_{3}} & {{c}_{3}} \\
\end{matrix} \right|={{m}_{2}}{{c}_{3}}-{{m}_{3}}{{c}_{2}}+{{m}_{3}}{{c}_{1}}-{{m}_{1}}{{c}_{3}}+{{m}_{1}}{{c}_{2}}-{{m}_{2}}{{c}_{1}}$
Now we simplify the equation ${{m}_{2}}{{c}_{3}}-{{m}_{3}}{{c}_{2}}+{{m}_{3}}{{c}_{1}}-{{m}_{1}}{{c}_{3}}+{{m}_{1}}{{c}_{2}}-{{m}_{2}}{{c}_{1}}=0$. We take common terms out.
$\begin{align}
& {{m}_{2}}{{c}_{3}}-{{m}_{3}}{{c}_{2}}+{{m}_{3}}{{c}_{1}}-{{m}_{1}}{{c}_{3}}+{{m}_{1}}{{c}_{2}}-{{m}_{2}}{{c}_{1}}=0 \\
& \Rightarrow {{m}_{1}}\left( {{c}_{2}}-{{c}_{3}} \right)+{{m}_{2}}\left( {{c}_{3}}-{{c}_{1}} \right)+{{m}_{3}}\left( {{c}_{1}}-{{c}_{2}} \right)=0 \\
\end{align}$
Therefore, the conditions that the straight lines $y={{m}_{1}}x+{{c}_{1}}$, $y={{m}_{2}}x+{{c}_{2}}$, $y={{m}_{3}}x+{{c}_{3}}$ may meet in a point is ${{m}_{1}}\left( {{c}_{2}}-{{c}_{3}} \right)+{{m}_{2}}\left( {{c}_{3}}-{{c}_{1}} \right)+{{m}_{3}}\left( {{c}_{1}}-{{c}_{2}} \right)=0$.
Note: Three or more distinct lines are said to be concurrent, if they pass through the same point. The point of intersection of any two lines, which lie on the third line is called the point of concurrence. Thus, if three lines are concurrent the point of intersection of two lines lies on the third line.
Complete step by step answer:
We assume the point $\left( h,k \right)$ in which the straight lines $y={{m}_{1}}x+{{c}_{1}}$, $y={{m}_{2}}x+{{c}_{2}}$, $y={{m}_{3}}x+{{c}_{3}}$ meet each other.
It means that the point $\left( h,k \right)$ lies on every line of $y={{m}_{1}}x+{{c}_{1}}$, $y={{m}_{2}}x+{{c}_{2}}$, $y={{m}_{3}}x+{{c}_{3}}$.
The point satisfies the equations.
Therefore, $k={{m}_{1}}h+{{c}_{1}}$, $k={{m}_{2}}h+{{c}_{2}}$, $k={{m}_{3}}h+{{c}_{3}}$.
We convert them into equations into side of the equality.
$k-{{m}_{1}}h-{{c}_{1}}=0$, $k-{{m}_{2}}h-{{c}_{2}}=0$, $k-{{m}_{3}}h-{{c}_{3}}=0$.
The three lines represents the same point with area being 0 when the coefficient matrix of the equations has determinant value 0 which means the matrix is singular matrix.
Therefore, $\left| \begin{matrix}
1 & -{{m}_{1}} & -{{c}_{1}} \\
1 & -{{m}_{2}} & -{{c}_{2}} \\
1 & -{{m}_{3}} & -{{c}_{3}} \\
\end{matrix} \right|=0$.
We now need to simplify the determinant by expanding through the first column.
$\left| \begin{matrix}
1 & -{{m}_{1}} & -{{c}_{1}} \\
1 & -{{m}_{2}} & -{{c}_{2}} \\
1 & -{{m}_{3}} & -{{c}_{3}} \\
\end{matrix} \right|=\left| \begin{matrix}
1 & {{m}_{1}} & {{c}_{1}} \\
1 & {{m}_{2}} & {{c}_{2}} \\
1 & {{m}_{3}} & {{c}_{3}} \\
\end{matrix} \right|$
$\left| \begin{matrix}
1 & {{m}_{1}} & {{c}_{1}} \\
1 & {{m}_{2}} & {{c}_{2}} \\
1 & {{m}_{3}} & {{c}_{3}} \\
\end{matrix} \right|={{m}_{2}}{{c}_{3}}-{{m}_{3}}{{c}_{2}}+{{m}_{3}}{{c}_{1}}-{{m}_{1}}{{c}_{3}}+{{m}_{1}}{{c}_{2}}-{{m}_{2}}{{c}_{1}}$
Now we simplify the equation ${{m}_{2}}{{c}_{3}}-{{m}_{3}}{{c}_{2}}+{{m}_{3}}{{c}_{1}}-{{m}_{1}}{{c}_{3}}+{{m}_{1}}{{c}_{2}}-{{m}_{2}}{{c}_{1}}=0$. We take common terms out.
$\begin{align}
& {{m}_{2}}{{c}_{3}}-{{m}_{3}}{{c}_{2}}+{{m}_{3}}{{c}_{1}}-{{m}_{1}}{{c}_{3}}+{{m}_{1}}{{c}_{2}}-{{m}_{2}}{{c}_{1}}=0 \\
& \Rightarrow {{m}_{1}}\left( {{c}_{2}}-{{c}_{3}} \right)+{{m}_{2}}\left( {{c}_{3}}-{{c}_{1}} \right)+{{m}_{3}}\left( {{c}_{1}}-{{c}_{2}} \right)=0 \\
\end{align}$
Therefore, the conditions that the straight lines $y={{m}_{1}}x+{{c}_{1}}$, $y={{m}_{2}}x+{{c}_{2}}$, $y={{m}_{3}}x+{{c}_{3}}$ may meet in a point is ${{m}_{1}}\left( {{c}_{2}}-{{c}_{3}} \right)+{{m}_{2}}\left( {{c}_{3}}-{{c}_{1}} \right)+{{m}_{3}}\left( {{c}_{1}}-{{c}_{2}} \right)=0$.
Note: Three or more distinct lines are said to be concurrent, if they pass through the same point. The point of intersection of any two lines, which lie on the third line is called the point of concurrence. Thus, if three lines are concurrent the point of intersection of two lines lies on the third line.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE