Answer
Verified
459.3k+ views
Hint: To solve this question, we will use the concept of section formula. The coordinates of the point R which divides the line segment joining two points \[P\left( {{x_1},{y_1}} \right)\] and \[Q\left( {{x_2},{y_2}} \right)\] in the ratio m:n are given by, $x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$ and \[y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}\]
Complete step-by-step answer:
Given that,
A line segment joining the points (1, -2) and (-3, 4) gets trisected and we have to find the coordinates of those points which trisects this line.
We know that the line segment which gets trisects means the line is divided either into 2:1 or in 1:2.
So,
Let A and B be the points which trisects the line PQ. Then, AP = AB = BQ.
Therefore, A divides the line PQ in the ratio 1:2 and B divides the line PQ in the ratio 2:1.
Case 1: when $A\left( {x,y} \right)$ divides the line in ratio 1:2.
By using the section formula,
The coordinates of the point $A\left( {x,y} \right)$ is given by,
\[ \Rightarrow A\left( {x,y} \right) = \left( {\dfrac{{1 \times \left( { - 3} \right) + 2 \times 1}}{{1 + 2}},\dfrac{{1 \times \left( 4 \right) + 2 \times \left( { - 2} \right)}}{{1 + 2}}} \right)\]
\[ \Rightarrow A\left( {x,y} \right) = \left( {\dfrac{{ - 3 + 2}}{3},\dfrac{{4 - 4}}{3}} \right)\]
\[ \Rightarrow A\left( {x,y} \right) = \left( {\dfrac{{ - 1}}{3},0} \right)\]
Case 2: when $B\left( {x,y} \right)$ divides the line in 2:1.
By using the section formula,
The coordinates of the point $B\left( {x,y} \right)$ is given by,
\[ \Rightarrow B\left( {x,y} \right) = \left( {\dfrac{{2 \times \left( { - 3} \right) + 1 \times 1}}{{2 + 1}},\dfrac{{2 \times \left( 4 \right) + 1 \times \left( { - 2} \right)}}{{2 + 1}}} \right)\]
\[ \Rightarrow B\left( {x,y} \right) = \left( {\dfrac{{ - 6 + 1}}{3},\dfrac{{8 - 2}}{3}} \right)\]
\[ \Rightarrow B\left( {x,y} \right) = \left( {\dfrac{{ - 5}}{3},2} \right)\]
Hence, we can say that the coordinates of the points which trisects the line segment joining (1, -2) and (-3, 4) are \[\left( {\dfrac{{ - 1}}{3},0} \right)\] are \[\left( {\dfrac{{ - 5}}{3},2} \right)\]
Note: In this type of questions, we also have to remember that the coordinates of the mid-point of the line segment joining by the two points \[P\left( {{x_1},{y_1}} \right)\] and \[Q\left( {{x_2},{y_2}} \right)\] are given by, $\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
Complete step-by-step answer:
Given that,
A line segment joining the points (1, -2) and (-3, 4) gets trisected and we have to find the coordinates of those points which trisects this line.
We know that the line segment which gets trisects means the line is divided either into 2:1 or in 1:2.
So,
Let A and B be the points which trisects the line PQ. Then, AP = AB = BQ.
Therefore, A divides the line PQ in the ratio 1:2 and B divides the line PQ in the ratio 2:1.
Case 1: when $A\left( {x,y} \right)$ divides the line in ratio 1:2.
By using the section formula,
The coordinates of the point $A\left( {x,y} \right)$ is given by,
\[ \Rightarrow A\left( {x,y} \right) = \left( {\dfrac{{1 \times \left( { - 3} \right) + 2 \times 1}}{{1 + 2}},\dfrac{{1 \times \left( 4 \right) + 2 \times \left( { - 2} \right)}}{{1 + 2}}} \right)\]
\[ \Rightarrow A\left( {x,y} \right) = \left( {\dfrac{{ - 3 + 2}}{3},\dfrac{{4 - 4}}{3}} \right)\]
\[ \Rightarrow A\left( {x,y} \right) = \left( {\dfrac{{ - 1}}{3},0} \right)\]
Case 2: when $B\left( {x,y} \right)$ divides the line in 2:1.
By using the section formula,
The coordinates of the point $B\left( {x,y} \right)$ is given by,
\[ \Rightarrow B\left( {x,y} \right) = \left( {\dfrac{{2 \times \left( { - 3} \right) + 1 \times 1}}{{2 + 1}},\dfrac{{2 \times \left( 4 \right) + 1 \times \left( { - 2} \right)}}{{2 + 1}}} \right)\]
\[ \Rightarrow B\left( {x,y} \right) = \left( {\dfrac{{ - 6 + 1}}{3},\dfrac{{8 - 2}}{3}} \right)\]
\[ \Rightarrow B\left( {x,y} \right) = \left( {\dfrac{{ - 5}}{3},2} \right)\]
Hence, we can say that the coordinates of the points which trisects the line segment joining (1, -2) and (-3, 4) are \[\left( {\dfrac{{ - 1}}{3},0} \right)\] are \[\left( {\dfrac{{ - 5}}{3},2} \right)\]
Note: In this type of questions, we also have to remember that the coordinates of the mid-point of the line segment joining by the two points \[P\left( {{x_1},{y_1}} \right)\] and \[Q\left( {{x_2},{y_2}} \right)\] are given by, $\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE