Answer
Verified
431.7k+ views
Hint:In order to determine the critical numbers for the above function, first find the derivative of the function with respect to x . Put the derivative equal to zero to find out the value of $x$. The values of $x$ are nothing but the critical number of $f\left( x \right)$
Formula:
$\dfrac{d}{{dx}}(\ln x) = \dfrac{1}{x}$
$\dfrac{d}{{dx}}({e^x}) = {e^x}$
$\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}$
Complete step by step solution:
We are given a function $f\left( x \right) = {x^{\dfrac{2}{3}}} + {x^{ - \dfrac{1}{3}}}$
In order to find the critical number of the above function, we first know what are critical numbers.
Critical numbers of any function $f\left( x \right)$ are the values of variable x for which derivative of
$f'(x) = 0$.
For this, we have to first find out the derivative of our function with respect to .
$\dfrac{d}{{dx}}f\left( x \right) = \dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}} + {x^{ - \dfrac{1}{3}}}}
\right)$
Separating the derivative inside the bracket , we get
$f'\left( x \right) = \dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{x^{ - \dfrac{1}{3}}}} \right)$
As we know the derivative of variable $x$raised to power some value \[n\] is $\dfrac{d}{{dx}}({x^n})
= n{x^{n - 1}}$. Applying this rule to the above equation to find the derivative of both the terms, we get
$
f'\left( x \right) = \dfrac{2}{3}{x^{\dfrac{2}{3} - 1}} + \dfrac{1}{3}{x^{ - \dfrac{1}{3} - 1}} \\
= \dfrac{2}{3}{x^{\dfrac{{2 - 3}}{3}}} + \dfrac{1}{3}{x^{ - \dfrac{{1 - 3}}{3}}} \\
= \dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}} \\
$
Now putting the $f'(x) = 0$ to obtain the critical numbers
$
f'(x) = \dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}} = 0 \\
\dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}} = 0 \\
$
Multiplying both sides of the equation with $\dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}$, our equation
becomes
$\left( {\dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}} \right)\left( {\dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} +
\dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}}} \right) = 0 \times \dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}$
Simplifying further by using the rule of exponent that $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
$
\left( {\dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}} \right)\left( {\dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} +
\dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}}} \right) = 0 \times \dfrac{3}{{{x^{ - \dfrac{1}{3}}}}} \\
2\left( {\dfrac{{{x^{\dfrac{{ - 1}}{3}}}}}{{{x^{ - \dfrac{1}{3}}}}}} \right) + \dfrac{{{x^{\dfrac{{ -
4}}{3}}}}}{{{x^{ - \dfrac{1}{3}}}}} = 0 \\
2\left( {{x^{\dfrac{{ - 1}}{3} + \dfrac{1}{3}}}} \right) + {x^{\dfrac{{ - 4}}{3} + \dfrac{1}{3}}} = 0
\\
2\left( {{x^0}} \right) + {x^{\dfrac{{ - 3}}{3}}} = 0 \\
$
As we know anything raised to the power zero equal to one
$
2 + {x^{ - 1}} = 0 \\
{x^{ - 1}} = - 2 \\
\dfrac{1}{x} = - 2 \\
$
Taking reciprocal on both of the sides, we get
$x = - \dfrac{1}{2}$
Therefore, the critical number for function$f\left( x \right) = {x^{\dfrac{2}{3}}} + {x^{ -
\dfrac{1}{3}}}$is $x = - \dfrac{1}{2}$.
Additional Information:
1.What is Differentiation?
It is a method by which we can find the derivative of the function .It is a process through which we can find the instantaneous rate of change in a function based on one of its variables. Let y = f(x) be a function of x. So the rate of change of $y$per unit change in $x$ is given by:
$\dfrac{{dy}}{{dx}}$.
Note:
1.Don’t forget to cross-check your answer at least once.
2.Differentiation is basically the inverse of integration.
3. Critical numbers are those values of x at which the graph of function changes.
Formula:
$\dfrac{d}{{dx}}(\ln x) = \dfrac{1}{x}$
$\dfrac{d}{{dx}}({e^x}) = {e^x}$
$\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}$
Complete step by step solution:
We are given a function $f\left( x \right) = {x^{\dfrac{2}{3}}} + {x^{ - \dfrac{1}{3}}}$
In order to find the critical number of the above function, we first know what are critical numbers.
Critical numbers of any function $f\left( x \right)$ are the values of variable x for which derivative of
$f'(x) = 0$.
For this, we have to first find out the derivative of our function with respect to .
$\dfrac{d}{{dx}}f\left( x \right) = \dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}} + {x^{ - \dfrac{1}{3}}}}
\right)$
Separating the derivative inside the bracket , we get
$f'\left( x \right) = \dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{x^{ - \dfrac{1}{3}}}} \right)$
As we know the derivative of variable $x$raised to power some value \[n\] is $\dfrac{d}{{dx}}({x^n})
= n{x^{n - 1}}$. Applying this rule to the above equation to find the derivative of both the terms, we get
$
f'\left( x \right) = \dfrac{2}{3}{x^{\dfrac{2}{3} - 1}} + \dfrac{1}{3}{x^{ - \dfrac{1}{3} - 1}} \\
= \dfrac{2}{3}{x^{\dfrac{{2 - 3}}{3}}} + \dfrac{1}{3}{x^{ - \dfrac{{1 - 3}}{3}}} \\
= \dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}} \\
$
Now putting the $f'(x) = 0$ to obtain the critical numbers
$
f'(x) = \dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}} = 0 \\
\dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}} = 0 \\
$
Multiplying both sides of the equation with $\dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}$, our equation
becomes
$\left( {\dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}} \right)\left( {\dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} +
\dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}}} \right) = 0 \times \dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}$
Simplifying further by using the rule of exponent that $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
$
\left( {\dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}} \right)\left( {\dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} +
\dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}}} \right) = 0 \times \dfrac{3}{{{x^{ - \dfrac{1}{3}}}}} \\
2\left( {\dfrac{{{x^{\dfrac{{ - 1}}{3}}}}}{{{x^{ - \dfrac{1}{3}}}}}} \right) + \dfrac{{{x^{\dfrac{{ -
4}}{3}}}}}{{{x^{ - \dfrac{1}{3}}}}} = 0 \\
2\left( {{x^{\dfrac{{ - 1}}{3} + \dfrac{1}{3}}}} \right) + {x^{\dfrac{{ - 4}}{3} + \dfrac{1}{3}}} = 0
\\
2\left( {{x^0}} \right) + {x^{\dfrac{{ - 3}}{3}}} = 0 \\
$
As we know anything raised to the power zero equal to one
$
2 + {x^{ - 1}} = 0 \\
{x^{ - 1}} = - 2 \\
\dfrac{1}{x} = - 2 \\
$
Taking reciprocal on both of the sides, we get
$x = - \dfrac{1}{2}$
Therefore, the critical number for function$f\left( x \right) = {x^{\dfrac{2}{3}}} + {x^{ -
\dfrac{1}{3}}}$is $x = - \dfrac{1}{2}$.
Additional Information:
1.What is Differentiation?
It is a method by which we can find the derivative of the function .It is a process through which we can find the instantaneous rate of change in a function based on one of its variables. Let y = f(x) be a function of x. So the rate of change of $y$per unit change in $x$ is given by:
$\dfrac{{dy}}{{dx}}$.
Note:
1.Don’t forget to cross-check your answer at least once.
2.Differentiation is basically the inverse of integration.
3. Critical numbers are those values of x at which the graph of function changes.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE