
How do you find the critical numbers of $f\left( x \right) = {x^{\dfrac{2}{3}}} + {x^{ - \dfrac{1}{3}}}$?
Answer
554.1k+ views
Hint:In order to determine the critical numbers for the above function, first find the derivative of the function with respect to x . Put the derivative equal to zero to find out the value of $x$. The values of $x$ are nothing but the critical number of $f\left( x \right)$
Formula:
$\dfrac{d}{{dx}}(\ln x) = \dfrac{1}{x}$
$\dfrac{d}{{dx}}({e^x}) = {e^x}$
$\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}$
Complete step by step solution:
We are given a function $f\left( x \right) = {x^{\dfrac{2}{3}}} + {x^{ - \dfrac{1}{3}}}$
In order to find the critical number of the above function, we first know what are critical numbers.
Critical numbers of any function $f\left( x \right)$ are the values of variable x for which derivative of
$f'(x) = 0$.
For this, we have to first find out the derivative of our function with respect to .
$\dfrac{d}{{dx}}f\left( x \right) = \dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}} + {x^{ - \dfrac{1}{3}}}}
\right)$
Separating the derivative inside the bracket , we get
$f'\left( x \right) = \dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{x^{ - \dfrac{1}{3}}}} \right)$
As we know the derivative of variable $x$raised to power some value \[n\] is $\dfrac{d}{{dx}}({x^n})
= n{x^{n - 1}}$. Applying this rule to the above equation to find the derivative of both the terms, we get
$
f'\left( x \right) = \dfrac{2}{3}{x^{\dfrac{2}{3} - 1}} + \dfrac{1}{3}{x^{ - \dfrac{1}{3} - 1}} \\
= \dfrac{2}{3}{x^{\dfrac{{2 - 3}}{3}}} + \dfrac{1}{3}{x^{ - \dfrac{{1 - 3}}{3}}} \\
= \dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}} \\
$
Now putting the $f'(x) = 0$ to obtain the critical numbers
$
f'(x) = \dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}} = 0 \\
\dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}} = 0 \\
$
Multiplying both sides of the equation with $\dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}$, our equation
becomes
$\left( {\dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}} \right)\left( {\dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} +
\dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}}} \right) = 0 \times \dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}$
Simplifying further by using the rule of exponent that $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
$
\left( {\dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}} \right)\left( {\dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} +
\dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}}} \right) = 0 \times \dfrac{3}{{{x^{ - \dfrac{1}{3}}}}} \\
2\left( {\dfrac{{{x^{\dfrac{{ - 1}}{3}}}}}{{{x^{ - \dfrac{1}{3}}}}}} \right) + \dfrac{{{x^{\dfrac{{ -
4}}{3}}}}}{{{x^{ - \dfrac{1}{3}}}}} = 0 \\
2\left( {{x^{\dfrac{{ - 1}}{3} + \dfrac{1}{3}}}} \right) + {x^{\dfrac{{ - 4}}{3} + \dfrac{1}{3}}} = 0
\\
2\left( {{x^0}} \right) + {x^{\dfrac{{ - 3}}{3}}} = 0 \\
$
As we know anything raised to the power zero equal to one
$
2 + {x^{ - 1}} = 0 \\
{x^{ - 1}} = - 2 \\
\dfrac{1}{x} = - 2 \\
$
Taking reciprocal on both of the sides, we get
$x = - \dfrac{1}{2}$
Therefore, the critical number for function$f\left( x \right) = {x^{\dfrac{2}{3}}} + {x^{ -
\dfrac{1}{3}}}$is $x = - \dfrac{1}{2}$.
Additional Information:
1.What is Differentiation?
It is a method by which we can find the derivative of the function .It is a process through which we can find the instantaneous rate of change in a function based on one of its variables. Let y = f(x) be a function of x. So the rate of change of $y$per unit change in $x$ is given by:
$\dfrac{{dy}}{{dx}}$.
Note:
1.Don’t forget to cross-check your answer at least once.
2.Differentiation is basically the inverse of integration.
3. Critical numbers are those values of x at which the graph of function changes.
Formula:
$\dfrac{d}{{dx}}(\ln x) = \dfrac{1}{x}$
$\dfrac{d}{{dx}}({e^x}) = {e^x}$
$\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}$
Complete step by step solution:
We are given a function $f\left( x \right) = {x^{\dfrac{2}{3}}} + {x^{ - \dfrac{1}{3}}}$
In order to find the critical number of the above function, we first know what are critical numbers.
Critical numbers of any function $f\left( x \right)$ are the values of variable x for which derivative of
$f'(x) = 0$.
For this, we have to first find out the derivative of our function with respect to .
$\dfrac{d}{{dx}}f\left( x \right) = \dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}} + {x^{ - \dfrac{1}{3}}}}
\right)$
Separating the derivative inside the bracket , we get
$f'\left( x \right) = \dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{x^{ - \dfrac{1}{3}}}} \right)$
As we know the derivative of variable $x$raised to power some value \[n\] is $\dfrac{d}{{dx}}({x^n})
= n{x^{n - 1}}$. Applying this rule to the above equation to find the derivative of both the terms, we get
$
f'\left( x \right) = \dfrac{2}{3}{x^{\dfrac{2}{3} - 1}} + \dfrac{1}{3}{x^{ - \dfrac{1}{3} - 1}} \\
= \dfrac{2}{3}{x^{\dfrac{{2 - 3}}{3}}} + \dfrac{1}{3}{x^{ - \dfrac{{1 - 3}}{3}}} \\
= \dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}} \\
$
Now putting the $f'(x) = 0$ to obtain the critical numbers
$
f'(x) = \dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}} = 0 \\
\dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}} = 0 \\
$
Multiplying both sides of the equation with $\dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}$, our equation
becomes
$\left( {\dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}} \right)\left( {\dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} +
\dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}}} \right) = 0 \times \dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}$
Simplifying further by using the rule of exponent that $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
$
\left( {\dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}} \right)\left( {\dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} +
\dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}}} \right) = 0 \times \dfrac{3}{{{x^{ - \dfrac{1}{3}}}}} \\
2\left( {\dfrac{{{x^{\dfrac{{ - 1}}{3}}}}}{{{x^{ - \dfrac{1}{3}}}}}} \right) + \dfrac{{{x^{\dfrac{{ -
4}}{3}}}}}{{{x^{ - \dfrac{1}{3}}}}} = 0 \\
2\left( {{x^{\dfrac{{ - 1}}{3} + \dfrac{1}{3}}}} \right) + {x^{\dfrac{{ - 4}}{3} + \dfrac{1}{3}}} = 0
\\
2\left( {{x^0}} \right) + {x^{\dfrac{{ - 3}}{3}}} = 0 \\
$
As we know anything raised to the power zero equal to one
$
2 + {x^{ - 1}} = 0 \\
{x^{ - 1}} = - 2 \\
\dfrac{1}{x} = - 2 \\
$
Taking reciprocal on both of the sides, we get
$x = - \dfrac{1}{2}$
Therefore, the critical number for function$f\left( x \right) = {x^{\dfrac{2}{3}}} + {x^{ -
\dfrac{1}{3}}}$is $x = - \dfrac{1}{2}$.
Additional Information:
1.What is Differentiation?
It is a method by which we can find the derivative of the function .It is a process through which we can find the instantaneous rate of change in a function based on one of its variables. Let y = f(x) be a function of x. So the rate of change of $y$per unit change in $x$ is given by:
$\dfrac{{dy}}{{dx}}$.
Note:
1.Don’t forget to cross-check your answer at least once.
2.Differentiation is basically the inverse of integration.
3. Critical numbers are those values of x at which the graph of function changes.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

