Answer
Verified
444.6k+ views
Hint: Here we have two vectors and we need to find their cross product. First we will find their cross product with the necessary formula. The cross product will be a vector so it will have both the magnitude and direction. Then we will find the magnitude of that vector with the necessary formula.
Formula used:
$i\times i=j\times j=k\times k=0,i\times j=k,j\times k=i,k\times i=j$ ,\[\overrightarrow{A}\times \overrightarrow{B}=-\overrightarrow{B}\times \overrightarrow{A},\left| A \right|=\sqrt{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}}\]
Complete answer:
\[\overrightarrow{A}=3i+2j-4k\] and $\overrightarrow{B}=2i-3j-6k$,so using
$i\times i=j\times j=k\times k=0,i\times j=k,j\times k=i,k\times i=j$
We have
$\overrightarrow{A}\times \overrightarrow{B}=(3i+2j-4k)\times (2i-3j-6k)=-9k+18j-4k-12i-8j-12i=-24i+10j-13k$Thus
$\overrightarrow{A}\times \overrightarrow{B}=-24i+10j-13k$ .
Therefore
$\left| \overrightarrow{A}\times \overrightarrow{B} \right|=\sqrt{{{(-24)}^{2}}+{{(10)}^{2}}+{{(-13)}^{2}}}=\sqrt{576+100+169}=\sqrt{845}=29.07$
Additional information:
There are two types of products in vector, one is dot product and the other one is cross product. If we have two vectors $\overrightarrow{A}$ and$\overrightarrow{B}$ and the angle between the two vectors is$\theta $ ,
then their dot product is given by
$\overrightarrow{A}.\overrightarrow{B}=\left| A \right|\left| B \right|\cos \theta $ . The dot product gives a scalar quantity. One example is work. The cross product of two vectors is given by
$\overrightarrow{A}\times \overrightarrow{B}=\left| A \right|\left| B \right|\sin \theta \times \overrightarrow{n}$ . Where $\overrightarrow{n}$ is a unit vector perpendicular to both$\overrightarrow{A}$ and$\overrightarrow{B}$ .The cross product gives a vector quantity. One example is torque.
A unit vector is a vector whose magnitude is unity. If we divide a vector by its magnitude we get the unit vector along the direction of the vector. Thus if$\overrightarrow{a}$ is the unit vector along the vector $\overrightarrow{A}$ , we have
$\overrightarrow{a}=\dfrac{\overrightarrow{A}}{\left| A \right|}$
Note:
In this type of question we have to do the calculations very minutely as it requires rigorous work. In this problem we have used the formula for cross product. The problem could have been done by calculating the cross product in determinant form. In case of finding the magnitude, we should not forget to do the square root in the final step.
Formula used:
$i\times i=j\times j=k\times k=0,i\times j=k,j\times k=i,k\times i=j$ ,\[\overrightarrow{A}\times \overrightarrow{B}=-\overrightarrow{B}\times \overrightarrow{A},\left| A \right|=\sqrt{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}}\]
Complete answer:
\[\overrightarrow{A}=3i+2j-4k\] and $\overrightarrow{B}=2i-3j-6k$,so using
$i\times i=j\times j=k\times k=0,i\times j=k,j\times k=i,k\times i=j$
We have
$\overrightarrow{A}\times \overrightarrow{B}=(3i+2j-4k)\times (2i-3j-6k)=-9k+18j-4k-12i-8j-12i=-24i+10j-13k$Thus
$\overrightarrow{A}\times \overrightarrow{B}=-24i+10j-13k$ .
Therefore
$\left| \overrightarrow{A}\times \overrightarrow{B} \right|=\sqrt{{{(-24)}^{2}}+{{(10)}^{2}}+{{(-13)}^{2}}}=\sqrt{576+100+169}=\sqrt{845}=29.07$
Additional information:
There are two types of products in vector, one is dot product and the other one is cross product. If we have two vectors $\overrightarrow{A}$ and$\overrightarrow{B}$ and the angle between the two vectors is$\theta $ ,
then their dot product is given by
$\overrightarrow{A}.\overrightarrow{B}=\left| A \right|\left| B \right|\cos \theta $ . The dot product gives a scalar quantity. One example is work. The cross product of two vectors is given by
$\overrightarrow{A}\times \overrightarrow{B}=\left| A \right|\left| B \right|\sin \theta \times \overrightarrow{n}$ . Where $\overrightarrow{n}$ is a unit vector perpendicular to both$\overrightarrow{A}$ and$\overrightarrow{B}$ .The cross product gives a vector quantity. One example is torque.
A unit vector is a vector whose magnitude is unity. If we divide a vector by its magnitude we get the unit vector along the direction of the vector. Thus if$\overrightarrow{a}$ is the unit vector along the vector $\overrightarrow{A}$ , we have
$\overrightarrow{a}=\dfrac{\overrightarrow{A}}{\left| A \right|}$
Note:
In this type of question we have to do the calculations very minutely as it requires rigorous work. In this problem we have used the formula for cross product. The problem could have been done by calculating the cross product in determinant form. In case of finding the magnitude, we should not forget to do the square root in the final step.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE