
How do you find the cube root of $81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right)$
Answer
542.4k+ views
Hint: In this problem we need to calculate the cube root of the given value. We can observe that the given value is an imaginary number which is in the form of $r\left( \cos \theta +i\sin \theta \right)$. We know that De moivre’s theorem states that ${{\left[ r\left( \cos \theta +i\sin \theta \right) \right]}^{n}}={{r}^{n}}\left( \cos n\theta +i\sin n\theta \right)$. So first we will take the cube root of the given value as the \[{{\left( \dfrac{1}{3} \right)}^{rd}}\] power of the given value and apply the De moivre’s theorem. Now we will simplify the equation to get the required result.
Complete step by step solution:
Given that, $81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right)$.
Let $z=81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right)$.
We can write the cube root of the above value as
$\Rightarrow \sqrt[3]{z}=\sqrt[3]{81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right)}$
We are going to write the cube root as the \[{{\left( \dfrac{1}{3} \right)}^{rd}}\] power of the above value in the above equation, then we will get
$\Rightarrow \sqrt[3]{z}={{\left[ 81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right) \right]}^{\dfrac{1}{3}}}$
From the De moivre’s theorem have the formula ${{\left[ r\left( \cos \theta +i\sin \theta \right) \right]}^{n}}={{r}^{n}}\left( \cos n\theta +i\sin n\theta \right)$ applying this formula in the above equation, then we will get the cube root value as
$\Rightarrow \sqrt[3]{z}={{81}^{\dfrac{1}{3}}}\left( \cos \left( \dfrac{1}{3}\times \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{1}{3}\times \dfrac{\pi }{12} \right) \right)$
Simplifying the above equation by multiplying the denominators in the above equation, then we will get
$\Rightarrow \sqrt[3]{z}={{81}^{\dfrac{1}{3}}}\left( \cos \dfrac{\pi }{36}+i\sin \dfrac{\pi }{36} \right)$
Hence the cube root of the given value $81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right)$ is ${{81}^{\dfrac{1}{3}}}\left( \cos \dfrac{\pi }{36}+i\sin \dfrac{\pi }{36} \right)$.
Note: We can also use the value of $\sin \dfrac{\pi }{36}=0.173648$, $\cos \dfrac{\pi }{36}=0.984808$ in the above equation and simplify the value. We can use this procedure for any power of the imaginary number to simplify the value.
Complete step by step solution:
Given that, $81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right)$.
Let $z=81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right)$.
We can write the cube root of the above value as
$\Rightarrow \sqrt[3]{z}=\sqrt[3]{81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right)}$
We are going to write the cube root as the \[{{\left( \dfrac{1}{3} \right)}^{rd}}\] power of the above value in the above equation, then we will get
$\Rightarrow \sqrt[3]{z}={{\left[ 81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right) \right]}^{\dfrac{1}{3}}}$
From the De moivre’s theorem have the formula ${{\left[ r\left( \cos \theta +i\sin \theta \right) \right]}^{n}}={{r}^{n}}\left( \cos n\theta +i\sin n\theta \right)$ applying this formula in the above equation, then we will get the cube root value as
$\Rightarrow \sqrt[3]{z}={{81}^{\dfrac{1}{3}}}\left( \cos \left( \dfrac{1}{3}\times \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{1}{3}\times \dfrac{\pi }{12} \right) \right)$
Simplifying the above equation by multiplying the denominators in the above equation, then we will get
$\Rightarrow \sqrt[3]{z}={{81}^{\dfrac{1}{3}}}\left( \cos \dfrac{\pi }{36}+i\sin \dfrac{\pi }{36} \right)$
Hence the cube root of the given value $81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right)$ is ${{81}^{\dfrac{1}{3}}}\left( \cos \dfrac{\pi }{36}+i\sin \dfrac{\pi }{36} \right)$.
Note: We can also use the value of $\sin \dfrac{\pi }{36}=0.173648$, $\cos \dfrac{\pi }{36}=0.984808$ in the above equation and simplify the value. We can use this procedure for any power of the imaginary number to simplify the value.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

