
How do you find the cube root of $81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right)$
Answer
528.3k+ views
Hint: In this problem we need to calculate the cube root of the given value. We can observe that the given value is an imaginary number which is in the form of $r\left( \cos \theta +i\sin \theta \right)$. We know that De moivre’s theorem states that ${{\left[ r\left( \cos \theta +i\sin \theta \right) \right]}^{n}}={{r}^{n}}\left( \cos n\theta +i\sin n\theta \right)$. So first we will take the cube root of the given value as the \[{{\left( \dfrac{1}{3} \right)}^{rd}}\] power of the given value and apply the De moivre’s theorem. Now we will simplify the equation to get the required result.
Complete step by step solution:
Given that, $81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right)$.
Let $z=81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right)$.
We can write the cube root of the above value as
$\Rightarrow \sqrt[3]{z}=\sqrt[3]{81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right)}$
We are going to write the cube root as the \[{{\left( \dfrac{1}{3} \right)}^{rd}}\] power of the above value in the above equation, then we will get
$\Rightarrow \sqrt[3]{z}={{\left[ 81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right) \right]}^{\dfrac{1}{3}}}$
From the De moivre’s theorem have the formula ${{\left[ r\left( \cos \theta +i\sin \theta \right) \right]}^{n}}={{r}^{n}}\left( \cos n\theta +i\sin n\theta \right)$ applying this formula in the above equation, then we will get the cube root value as
$\Rightarrow \sqrt[3]{z}={{81}^{\dfrac{1}{3}}}\left( \cos \left( \dfrac{1}{3}\times \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{1}{3}\times \dfrac{\pi }{12} \right) \right)$
Simplifying the above equation by multiplying the denominators in the above equation, then we will get
$\Rightarrow \sqrt[3]{z}={{81}^{\dfrac{1}{3}}}\left( \cos \dfrac{\pi }{36}+i\sin \dfrac{\pi }{36} \right)$
Hence the cube root of the given value $81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right)$ is ${{81}^{\dfrac{1}{3}}}\left( \cos \dfrac{\pi }{36}+i\sin \dfrac{\pi }{36} \right)$.
Note: We can also use the value of $\sin \dfrac{\pi }{36}=0.173648$, $\cos \dfrac{\pi }{36}=0.984808$ in the above equation and simplify the value. We can use this procedure for any power of the imaginary number to simplify the value.
Complete step by step solution:
Given that, $81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right)$.
Let $z=81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right)$.
We can write the cube root of the above value as
$\Rightarrow \sqrt[3]{z}=\sqrt[3]{81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right)}$
We are going to write the cube root as the \[{{\left( \dfrac{1}{3} \right)}^{rd}}\] power of the above value in the above equation, then we will get
$\Rightarrow \sqrt[3]{z}={{\left[ 81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right) \right]}^{\dfrac{1}{3}}}$
From the De moivre’s theorem have the formula ${{\left[ r\left( \cos \theta +i\sin \theta \right) \right]}^{n}}={{r}^{n}}\left( \cos n\theta +i\sin n\theta \right)$ applying this formula in the above equation, then we will get the cube root value as
$\Rightarrow \sqrt[3]{z}={{81}^{\dfrac{1}{3}}}\left( \cos \left( \dfrac{1}{3}\times \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{1}{3}\times \dfrac{\pi }{12} \right) \right)$
Simplifying the above equation by multiplying the denominators in the above equation, then we will get
$\Rightarrow \sqrt[3]{z}={{81}^{\dfrac{1}{3}}}\left( \cos \dfrac{\pi }{36}+i\sin \dfrac{\pi }{36} \right)$
Hence the cube root of the given value $81\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right)$ is ${{81}^{\dfrac{1}{3}}}\left( \cos \dfrac{\pi }{36}+i\sin \dfrac{\pi }{36} \right)$.
Note: We can also use the value of $\sin \dfrac{\pi }{36}=0.173648$, $\cos \dfrac{\pi }{36}=0.984808$ in the above equation and simplify the value. We can use this procedure for any power of the imaginary number to simplify the value.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

