Answer
Verified
484.2k+ views
Hint: We will apply here the relation between radians and degrees. This relation is given numerically by ${{\left( \pi \right)}^{c}}={{180}^{\circ }}$. If we divide the expression by $\pi $ to both the denominators the we get the other relation between radians and degree and that is,
$\begin{align}
& {{\left( \dfrac{\pi }{\pi } \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
\end{align}$
Complete step-by-step answer:
Now, we will consider the radians ${{\left( 1 \right)}^{c}}$ and we will convert it into its degree. We will do this with the help of the formula which is given by ${{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }}$. So, we can directly write ${{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }}$ and substitute $\pi =\dfrac{22}{7}$ in this equation to get the answer. This can be done as
$\begin{align}
& {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\dfrac{22}{7}} \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{22}\times 7 \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( \dfrac{90}{11}\times 7 \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( \dfrac{630}{11} \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( 57.\overline{27} \right)}^{\circ }} \\
\end{align}$
The value ${{\left( 57.\overline{27} \right)}^{\circ }}$ is approximately equal to ${{\left( 1 \right)}^{c}}={{57.3}^{\text{o}}}$. Hence, the radian ${{\left( 1 \right)}^{c}}$ is equal to ${{\left( 57.32 \right)}^{\circ }}$ in degrees.
Note: Alternatively we can solve the question as ${{\left( 1 \right)}^{c}}=\left( 1 \right)\times {{\left( 1 \right)}^{c}}$. By substituting the value of ${{\left( 1 \right)}^{c}}$ we will have,
$\begin{align}
& {{\left( 1 \right)}^{c}}=\left( 1 \right)\times {{\left( 1 \right)}^{c}} \\
& \Rightarrow \left( 1 \right)\times {{\left( 1 \right)}^{c}}=\left( 1 \right)\times {{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
\end{align}$
This can be written as $\left( 1 \right)\times {{\left( 1 \right)}^{c}}=\left( 1 \right)\times {{\left( \dfrac{180}{\pi } \right)}^{\circ }}$. Therefore we get,
$\begin{align}
& \left( 1 \right)\times {{\left( 1 \right)}^{c}}=\left( 1 \right)\times {{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
& \Rightarrow \left( 1 \right)\times {{\left( 1 \right)}^{c}}={{\left( \left( 1 \right)\times \dfrac{180}{\pi } \right)}^{\circ }} \\
& \Rightarrow \left( 1 \right)\times {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
\end{align}$
Now we will substitute the value of $\pi =3.14$ approx. Therefore we have,
$\begin{align}
& \left( 1 \right)\times {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
& \Rightarrow \left( 1 \right)\times {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{3.14} \right)}^{\circ }} \\
& \Rightarrow \left( 1 \right)\times {{\left( 1 \right)}^{c}}={{\left( 57.32 \right)}^{\circ }} \\
\end{align}$
Hence, the radian ${{\left( 1 \right)}^{c}}$ is equal to ${{\left( 57.32 \right)}^{\circ }}$ in degrees. The radians can also be written directly as substituting 1 radian equal to 57.296 degrees or approximately 1 radian equals to 57.3 degrees. Numerically this can be written as ${{\left( 1 \right)}^{c}}={{57.3}^{\text{o}}}$.
$\begin{align}
& {{\left( \dfrac{\pi }{\pi } \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
\end{align}$
Complete step-by-step answer:
Now, we will consider the radians ${{\left( 1 \right)}^{c}}$ and we will convert it into its degree. We will do this with the help of the formula which is given by ${{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }}$. So, we can directly write ${{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }}$ and substitute $\pi =\dfrac{22}{7}$ in this equation to get the answer. This can be done as
$\begin{align}
& {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\dfrac{22}{7}} \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{22}\times 7 \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( \dfrac{90}{11}\times 7 \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( \dfrac{630}{11} \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( 57.\overline{27} \right)}^{\circ }} \\
\end{align}$
The value ${{\left( 57.\overline{27} \right)}^{\circ }}$ is approximately equal to ${{\left( 1 \right)}^{c}}={{57.3}^{\text{o}}}$. Hence, the radian ${{\left( 1 \right)}^{c}}$ is equal to ${{\left( 57.32 \right)}^{\circ }}$ in degrees.
Note: Alternatively we can solve the question as ${{\left( 1 \right)}^{c}}=\left( 1 \right)\times {{\left( 1 \right)}^{c}}$. By substituting the value of ${{\left( 1 \right)}^{c}}$ we will have,
$\begin{align}
& {{\left( 1 \right)}^{c}}=\left( 1 \right)\times {{\left( 1 \right)}^{c}} \\
& \Rightarrow \left( 1 \right)\times {{\left( 1 \right)}^{c}}=\left( 1 \right)\times {{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
\end{align}$
This can be written as $\left( 1 \right)\times {{\left( 1 \right)}^{c}}=\left( 1 \right)\times {{\left( \dfrac{180}{\pi } \right)}^{\circ }}$. Therefore we get,
$\begin{align}
& \left( 1 \right)\times {{\left( 1 \right)}^{c}}=\left( 1 \right)\times {{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
& \Rightarrow \left( 1 \right)\times {{\left( 1 \right)}^{c}}={{\left( \left( 1 \right)\times \dfrac{180}{\pi } \right)}^{\circ }} \\
& \Rightarrow \left( 1 \right)\times {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
\end{align}$
Now we will substitute the value of $\pi =3.14$ approx. Therefore we have,
$\begin{align}
& \left( 1 \right)\times {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
& \Rightarrow \left( 1 \right)\times {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{3.14} \right)}^{\circ }} \\
& \Rightarrow \left( 1 \right)\times {{\left( 1 \right)}^{c}}={{\left( 57.32 \right)}^{\circ }} \\
\end{align}$
Hence, the radian ${{\left( 1 \right)}^{c}}$ is equal to ${{\left( 57.32 \right)}^{\circ }}$ in degrees. The radians can also be written directly as substituting 1 radian equal to 57.296 degrees or approximately 1 radian equals to 57.3 degrees. Numerically this can be written as ${{\left( 1 \right)}^{c}}={{57.3}^{\text{o}}}$.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE