
Find the derivative of ${{\cos }^{2}}x$, by using the first principle of derivatives.
Answer
603.6k+ views
Hint: Here we will first describe the method of first principle of derivative and then further we may apply to find the derivative of the given function ${{\cos }^{2}}x$.
Complete step-by-step answer:
The first principle of derivative refers to using algebra to find a general expression for the slope of a curve. It is also known as the delta method.
We know that the gradient of the tangent to a curve with equation y = f(x) at x = a can be determined by the formula:
$Gradient=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}$
We can use this formula to determine an expression that describes the gradient of the graph ( or the gradient of the tangent to the graph ) at any point on the graph.
This expression is called the derivative and the process of determining the derivative of a function is called differentiation.
Now, we may apply this formula to find the derivative of ${{\cos }^{2}}x$.
Let $f\left( x \right)={{\cos }^{2}}x$
$\begin{align}
& f'\left( x \right)=\underset{h\to 0}{\mathop{lt}}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{\left( x+h \right)-h} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,=\underset{h\to 0}{\mathop{lt}}\,\dfrac{{{\cos }^{2}}\left( x+h \right)-{{\cos }^{2}}x}{h} \\
\end{align}$
Since, we know that ${{\cos }^{2}}x=1-{{\sin }^{2}}x$.
Therefore,
$\begin{align}
& f'\left( x \right)=\underset{h\to 0}{\mathop{lt}}\,\dfrac{1-{{\sin }^{2}}\left( x+h \right)-\left( 1-{{\sin }^{2x}} \right)}{h} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,=\underset{h\to 0}{\mathop{lt}}\,\dfrac{{{\sin }^{2}}x-{{\sin }^{2}}\left( x+h \right)}{h} \\
\end{align}$
Since, we have a trigonometric formula:
${{\sin }^{2}}A-{{\sin }^{2}}B=\sin \left( A-B \right)\sin \left( A+B \right)$
So, on using this we get to get the derivative of the given function, we get:
$\begin{align}
& f'\left( x \right)=\underset{h\to 0}{\mathop{lt}}\,\dfrac{\sin \left( x+x+h \right)\sin \left\{ x-\left( x+h \right) \right\}}{h} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,=\underset{h\to 0}{\mathop{lt}}\,\dfrac{\sin \left( 2x+h \right)\sin \left( x-x-h \right)}{h} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,=\underset{h\to 0}{\mathop{lt}}\,\sin \left( 2x+h \right)\times \left( -\underset{h\to 0}{\mathop{lt}}\,\dfrac{\sinh }{h} \right) \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,=\sin 2x\times \left( -1 \right) \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,=-\sin 2x \\
\end{align}$
Hence, the derivative of ${{\cos }^{2}}x$ is $-\sin 2x$.
Note: Students should remember certain trigonometric formulas while solving the problem and should keep in mind that the value of h always tends to zero. So, it can be neglected when it is being added to any other number.
Complete step-by-step answer:
The first principle of derivative refers to using algebra to find a general expression for the slope of a curve. It is also known as the delta method.
We know that the gradient of the tangent to a curve with equation y = f(x) at x = a can be determined by the formula:
$Gradient=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}$
We can use this formula to determine an expression that describes the gradient of the graph ( or the gradient of the tangent to the graph ) at any point on the graph.
This expression is called the derivative and the process of determining the derivative of a function is called differentiation.
Now, we may apply this formula to find the derivative of ${{\cos }^{2}}x$.
Let $f\left( x \right)={{\cos }^{2}}x$
$\begin{align}
& f'\left( x \right)=\underset{h\to 0}{\mathop{lt}}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{\left( x+h \right)-h} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,=\underset{h\to 0}{\mathop{lt}}\,\dfrac{{{\cos }^{2}}\left( x+h \right)-{{\cos }^{2}}x}{h} \\
\end{align}$
Since, we know that ${{\cos }^{2}}x=1-{{\sin }^{2}}x$.
Therefore,
$\begin{align}
& f'\left( x \right)=\underset{h\to 0}{\mathop{lt}}\,\dfrac{1-{{\sin }^{2}}\left( x+h \right)-\left( 1-{{\sin }^{2x}} \right)}{h} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,=\underset{h\to 0}{\mathop{lt}}\,\dfrac{{{\sin }^{2}}x-{{\sin }^{2}}\left( x+h \right)}{h} \\
\end{align}$
Since, we have a trigonometric formula:
${{\sin }^{2}}A-{{\sin }^{2}}B=\sin \left( A-B \right)\sin \left( A+B \right)$
So, on using this we get to get the derivative of the given function, we get:
$\begin{align}
& f'\left( x \right)=\underset{h\to 0}{\mathop{lt}}\,\dfrac{\sin \left( x+x+h \right)\sin \left\{ x-\left( x+h \right) \right\}}{h} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,=\underset{h\to 0}{\mathop{lt}}\,\dfrac{\sin \left( 2x+h \right)\sin \left( x-x-h \right)}{h} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,=\underset{h\to 0}{\mathop{lt}}\,\sin \left( 2x+h \right)\times \left( -\underset{h\to 0}{\mathop{lt}}\,\dfrac{\sinh }{h} \right) \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,=\sin 2x\times \left( -1 \right) \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,=-\sin 2x \\
\end{align}$
Hence, the derivative of ${{\cos }^{2}}x$ is $-\sin 2x$.
Note: Students should remember certain trigonometric formulas while solving the problem and should keep in mind that the value of h always tends to zero. So, it can be neglected when it is being added to any other number.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

