Find the derivative of ${{\cos }^{2}}x$, by using the first principle of derivatives. \[\]
Answer
Verified
448.5k+ views
Hint: We recall the first principle of derivative. We assume a small change in $x$ as $\delta x$ and its corresponding change in $y=f\left( x \right)$ as $\delta y$. We find the average rate of change as $\dfrac{\delta y}{\delta x}=\dfrac{f\left( x+\delta x \right)-f\left( x \right)}{\delta x}$ . We take limit $\delta x \to 0$ to find the instantaneous rate of change as derivative of $f\left( x \right)$.\[\]
Complete step-by-step solution:
We are given the function $f\left( x \right)={{\cos }^{2}}x$ in the question. Let us have$y={{\cos }^{2}}x$. Let $\delta x$ be a very small change in $x$ and the corresponding change in $y$ be $\delta y$. So we have;
\[y+\delta y={{\cos }^{2}}\left( x+\delta x \right)\]
We subtract $y$ both sides of the above equation to have;
\[\begin{align}
& \Rightarrow y+\delta y-y={{\cos }^{2}}\left( x+\delta x \right)-y \\
& \Rightarrow y+\delta y-y={{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x \\
& \Rightarrow \delta y={{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x \\
\end{align}\]
We divide $\delta x$ both sides of the above step to have;
\[\Rightarrow \dfrac{\delta y}{\delta x}=\dfrac{{{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x}{\delta x}\]
We take limit $\delta x \to 0$ both sides of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{{{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x}{\delta x}\]
We use the trigonometric identity ${{\cos }^{2}}B-{{\cos }^{2}}A=\sin \left( A+B \right)\sin \left( A-B \right)$ for $A=x,B=x+\delta x$ in the above step to have;
\[\begin{align}
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( x+\delta x+x \right)\sin \left( x-\delta x-x \right)}{\delta x} \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( 2x+\delta x \right)\sin \left( -\delta x \right)}{\delta x} \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( 2x+\delta x \right)\sin \left( \delta x \right)}{\delta x} \\
\end{align}\]
We use law of product if limits in the right hand side of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right)\cdot \displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( \delta x \right)}{\delta x}\]
We use the standard limit $\displaystyle \lim_{x \to o}\dfrac{\sin x}{x}=1$ for $x=\delta x$ in the right hand side of the above step to have;
\[\begin{align}
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right)\cdot 1 \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right) \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\sin 2x \\
\end{align}\]
We use the double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ for $\theta =x$ in the right hand side of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-2\sin x\cos \]
We know from first principle of derivative that $\displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\dfrac{dy}{dx}$. So we have
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=-2\sin x\cos x \\
& \Rightarrow \dfrac{d}{dx}\left( {{\cos }^{2}}x \right)=-2\sin x\cos x \\
\end{align}\]
Note: We can use chain rule to directly find the derivative of ${{\cos }^{2}}x$. If composite function is defined as $y=u\left( x \right),u=f\left( x \right)$ then the chain rule is given as $\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}$. We can also use the first principle for derivative with a very small change $h$ as $\dfrac{d}{dx}f\left( x \right)=\displaystyle \lim_{h\to 0}\dfrac{f\left( x+h \right)-f\left( h \right)}{h}$. The derivative of the function at particular points geometrically gives the slope of the tangent to the curve of the function. The first principle is also known as the delta method.
Complete step-by-step solution:
We are given the function $f\left( x \right)={{\cos }^{2}}x$ in the question. Let us have$y={{\cos }^{2}}x$. Let $\delta x$ be a very small change in $x$ and the corresponding change in $y$ be $\delta y$. So we have;
\[y+\delta y={{\cos }^{2}}\left( x+\delta x \right)\]
We subtract $y$ both sides of the above equation to have;
\[\begin{align}
& \Rightarrow y+\delta y-y={{\cos }^{2}}\left( x+\delta x \right)-y \\
& \Rightarrow y+\delta y-y={{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x \\
& \Rightarrow \delta y={{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x \\
\end{align}\]
We divide $\delta x$ both sides of the above step to have;
\[\Rightarrow \dfrac{\delta y}{\delta x}=\dfrac{{{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x}{\delta x}\]
We take limit $\delta x \to 0$ both sides of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{{{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x}{\delta x}\]
We use the trigonometric identity ${{\cos }^{2}}B-{{\cos }^{2}}A=\sin \left( A+B \right)\sin \left( A-B \right)$ for $A=x,B=x+\delta x$ in the above step to have;
\[\begin{align}
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( x+\delta x+x \right)\sin \left( x-\delta x-x \right)}{\delta x} \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( 2x+\delta x \right)\sin \left( -\delta x \right)}{\delta x} \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( 2x+\delta x \right)\sin \left( \delta x \right)}{\delta x} \\
\end{align}\]
We use law of product if limits in the right hand side of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right)\cdot \displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( \delta x \right)}{\delta x}\]
We use the standard limit $\displaystyle \lim_{x \to o}\dfrac{\sin x}{x}=1$ for $x=\delta x$ in the right hand side of the above step to have;
\[\begin{align}
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right)\cdot 1 \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right) \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\sin 2x \\
\end{align}\]
We use the double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ for $\theta =x$ in the right hand side of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-2\sin x\cos \]
We know from first principle of derivative that $\displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\dfrac{dy}{dx}$. So we have
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=-2\sin x\cos x \\
& \Rightarrow \dfrac{d}{dx}\left( {{\cos }^{2}}x \right)=-2\sin x\cos x \\
\end{align}\]
Note: We can use chain rule to directly find the derivative of ${{\cos }^{2}}x$. If composite function is defined as $y=u\left( x \right),u=f\left( x \right)$ then the chain rule is given as $\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}$. We can also use the first principle for derivative with a very small change $h$ as $\dfrac{d}{dx}f\left( x \right)=\displaystyle \lim_{h\to 0}\dfrac{f\left( x+h \right)-f\left( h \right)}{h}$. The derivative of the function at particular points geometrically gives the slope of the tangent to the curve of the function. The first principle is also known as the delta method.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE