Answer
Verified
429.9k+ views
Hint: In this problem we need to calculate the derivative of the given function. We can observe that the given function is a fraction with numerator $\sin x$, denominator $1+\cos x$. In differentiation we have the formula $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{{{u}^{'}}v-u{{v}^{'}}}{{{v}^{2}}}$. So, we will compare the given function with $\dfrac{u}{v}$ and write the values of $u$, $v$. After knowing the values of $u$, $v$ we will differentiate the both the values to get the values of ${{u}^{'}}$, ${{v}^{'}}$. After knowing the value of ${{u}^{'}}$, ${{v}^{'}}$ we will use the division’s derivative formula and simplify the equation to get the required result.
Complete step by step solution:
Given that, $\dfrac{\sin x}{1+\cos x}$.
Comparing the above fraction with $\dfrac{u}{v}$, then we will get
$u=\sin x$, $v=1+\cos x$.
Considering the value $u=\sin x$.
Differentiating the above equation with respect to $x$, then we will get
$\Rightarrow \dfrac{du}{dx}=\dfrac{d}{dx}\left( \sin x \right)$
We have the differentiation formula $\dfrac{d}{dx}\left( \sin x \right)=\cos x$, then we will have
$\Rightarrow {{u}^{'}}=\cos x$
Considering the value $v=1+\cos x$.
Differentiating the above equation with respect to $x$, then we will get
$\Rightarrow \dfrac{dv}{dx}=\dfrac{d}{dx}\left( 1+\cos x \right)$
We know that the differentiation of constant is zero and $\dfrac{d}{dx}\left( \cos x \right)=-\sin x$, then we will have
$\Rightarrow {{v}^{'}}=-\sin x$
Now the derivative of the given fraction is given by
$\begin{align}
& \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{{{u}^{'}}v-u{{v}^{'}}}{{{v}^{2}}} \\
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{\cos x\left( 1+\cos x \right)-\sin x\left( -\sin x \right)}{{{\left( 1+\cos x \right)}^{2}}} \\
\end{align}$
Simplifying the above equation, then we will have
$\Rightarrow \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{\cos x+{{\cos }^{2}}x+{{\sin }^{2}}x}{{{\left( 1+\cos x \right)}^{2}}}$
We have the trigonometric identity ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, then the above equation is modified as
$\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{1+\cos x}{{{\left( 1+\cos x \right)}^{2}}} \\
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{1}{1+\cos x} \\
\end{align}$
Hence the derivative of the given equation $\dfrac{\sin x}{1+\cos x}$ is $\dfrac{1}{1+\cos x}$.
Note: In this problem we can observe that ${{v}^{'}}=-\sin x=-u$. For this type of equation calculation of the integration is also simple. We have the integration formula $\int{\dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}dx}=\log \left| f\left( x \right) \right|+C$. We will use this formula and simplify it to get the integration value.
Complete step by step solution:
Given that, $\dfrac{\sin x}{1+\cos x}$.
Comparing the above fraction with $\dfrac{u}{v}$, then we will get
$u=\sin x$, $v=1+\cos x$.
Considering the value $u=\sin x$.
Differentiating the above equation with respect to $x$, then we will get
$\Rightarrow \dfrac{du}{dx}=\dfrac{d}{dx}\left( \sin x \right)$
We have the differentiation formula $\dfrac{d}{dx}\left( \sin x \right)=\cos x$, then we will have
$\Rightarrow {{u}^{'}}=\cos x$
Considering the value $v=1+\cos x$.
Differentiating the above equation with respect to $x$, then we will get
$\Rightarrow \dfrac{dv}{dx}=\dfrac{d}{dx}\left( 1+\cos x \right)$
We know that the differentiation of constant is zero and $\dfrac{d}{dx}\left( \cos x \right)=-\sin x$, then we will have
$\Rightarrow {{v}^{'}}=-\sin x$
Now the derivative of the given fraction is given by
$\begin{align}
& \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{{{u}^{'}}v-u{{v}^{'}}}{{{v}^{2}}} \\
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{\cos x\left( 1+\cos x \right)-\sin x\left( -\sin x \right)}{{{\left( 1+\cos x \right)}^{2}}} \\
\end{align}$
Simplifying the above equation, then we will have
$\Rightarrow \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{\cos x+{{\cos }^{2}}x+{{\sin }^{2}}x}{{{\left( 1+\cos x \right)}^{2}}}$
We have the trigonometric identity ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, then the above equation is modified as
$\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{1+\cos x}{{{\left( 1+\cos x \right)}^{2}}} \\
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{1}{1+\cos x} \\
\end{align}$
Hence the derivative of the given equation $\dfrac{\sin x}{1+\cos x}$ is $\dfrac{1}{1+\cos x}$.
Note: In this problem we can observe that ${{v}^{'}}=-\sin x=-u$. For this type of equation calculation of the integration is also simple. We have the integration formula $\int{\dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}dx}=\log \left| f\left( x \right) \right|+C$. We will use this formula and simplify it to get the integration value.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE