Answer
Verified
431.7k+ views
Hint:Derivatives are defined as the varying rate of a function with respect to an independent variable. To differentiate the right hand side of the equation we use the product rule. That is if we have \[y = uv\] then its differentiation with respect to ‘x’ is \[\dfrac{{dy}}{{dx}} = u \times \dfrac{{dv}}{{dx}} + v \times \dfrac{{du}}{{dx}}\]. We solve this using implicit differentiation. We know that the differentiation of \[{e^x}\] is \[{e^x}\] with respect to ‘x’.
Complete step by step solution:
Given, \[{e^y} = x{y^2}\]
Now differentiate both sides with respect to ‘x’.
\[\dfrac{d}{{dx}}({e^y}) = \dfrac{d}{{dx}}(x{y^2})\]
Now applying the product rule\[\dfrac{{d(uv)}}{{dx}} = u \times \dfrac{{dv}}{{dx}} + v \times
\dfrac{{du}}{{dx}}\]
Where \[u = x\] and \[u = {y^2}\]. Then we have
\[\dfrac{d}{{dx}}({e^y}) = x \times \dfrac{{d({y^2})}}{{dx}} + {y^2} \times \dfrac{{d(x)}}{{dx}}\]
Applying the differentiation
\[{e^y}\dfrac{{dy}}{{dx}} = x \times 2y\dfrac{{dy}}{{dx}} + {y^2} \times 1\]
\[{e^y}\dfrac{{dy}}{{dx}} = 2xy\dfrac{{dy}}{{dx}} + {y^2}\]
Grouping \[\dfrac{{dy}}{{dx}}\] in on the left hand side of the equation,
\[{e^y}\dfrac{{dy}}{{dx}} - 2xy\dfrac{{dy}}{{dx}} = {y^2}\]
Taking \[\dfrac{{dy}}{{dx}}\] common, we have:
\[\dfrac{{dy}}{{dx}}\left( {{e^y} - 2xy} \right) = {y^2}\]
Dividing the whole equation by \[\left( {{e^y} - 2xy} \right)\],
\[\dfrac{{dy}}{{dx}} = \dfrac{{{y^2}}}{{\left( {{e^y} - 2xy} \right)}}\]. This is the required answer.
Note: We know the differentiation of \[{x^n}\] with respect to ‘x’ is \[\dfrac{{d({x^n})}}{{dx}} = n.{x^{n - 1}}\]. We know the differentiation of \[{y^n}\] with respect to ‘x’ is
\[\dfrac{{d({y^n})}}{{dx}} = n.{y^{n - 1}}\dfrac{{dy}}{{dx}}\]. We also have different rules in the differentiation. Those are
\[ \bullet \] Linear combination rules: The linearity law is very important to emphasize its nature with alternate notation. Symbolically it is specified as \[h'(x) = af'(x) + bg'(x)\]
\[ \bullet \] Product rule: When a derivative of a product of two function is to be found, then we use product rule that is \[\dfrac{{dy}}{{dx}} = u \times \dfrac{{dv}}{{dx}} + v \times
\dfrac{{du}}{{dx}}\].
\[ \bullet \]Chain rule: To find the derivative of composition function or function of a function, we use chain rule. That is \[fog'({x_0}) = [(f'og)({x_0})]g'({x_0})\]. We use these rules depending on the given problem.
Complete step by step solution:
Given, \[{e^y} = x{y^2}\]
Now differentiate both sides with respect to ‘x’.
\[\dfrac{d}{{dx}}({e^y}) = \dfrac{d}{{dx}}(x{y^2})\]
Now applying the product rule\[\dfrac{{d(uv)}}{{dx}} = u \times \dfrac{{dv}}{{dx}} + v \times
\dfrac{{du}}{{dx}}\]
Where \[u = x\] and \[u = {y^2}\]. Then we have
\[\dfrac{d}{{dx}}({e^y}) = x \times \dfrac{{d({y^2})}}{{dx}} + {y^2} \times \dfrac{{d(x)}}{{dx}}\]
Applying the differentiation
\[{e^y}\dfrac{{dy}}{{dx}} = x \times 2y\dfrac{{dy}}{{dx}} + {y^2} \times 1\]
\[{e^y}\dfrac{{dy}}{{dx}} = 2xy\dfrac{{dy}}{{dx}} + {y^2}\]
Grouping \[\dfrac{{dy}}{{dx}}\] in on the left hand side of the equation,
\[{e^y}\dfrac{{dy}}{{dx}} - 2xy\dfrac{{dy}}{{dx}} = {y^2}\]
Taking \[\dfrac{{dy}}{{dx}}\] common, we have:
\[\dfrac{{dy}}{{dx}}\left( {{e^y} - 2xy} \right) = {y^2}\]
Dividing the whole equation by \[\left( {{e^y} - 2xy} \right)\],
\[\dfrac{{dy}}{{dx}} = \dfrac{{{y^2}}}{{\left( {{e^y} - 2xy} \right)}}\]. This is the required answer.
Note: We know the differentiation of \[{x^n}\] with respect to ‘x’ is \[\dfrac{{d({x^n})}}{{dx}} = n.{x^{n - 1}}\]. We know the differentiation of \[{y^n}\] with respect to ‘x’ is
\[\dfrac{{d({y^n})}}{{dx}} = n.{y^{n - 1}}\dfrac{{dy}}{{dx}}\]. We also have different rules in the differentiation. Those are
\[ \bullet \] Linear combination rules: The linearity law is very important to emphasize its nature with alternate notation. Symbolically it is specified as \[h'(x) = af'(x) + bg'(x)\]
\[ \bullet \] Product rule: When a derivative of a product of two function is to be found, then we use product rule that is \[\dfrac{{dy}}{{dx}} = u \times \dfrac{{dv}}{{dx}} + v \times
\dfrac{{du}}{{dx}}\].
\[ \bullet \]Chain rule: To find the derivative of composition function or function of a function, we use chain rule. That is \[fog'({x_0}) = [(f'og)({x_0})]g'({x_0})\]. We use these rules depending on the given problem.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE