Answer
Verified
497.1k+ views
Hint-Here, we will proceed by differentiating the given function with respect to x and then we will use some formulas of differentiation which are $\dfrac{d}{{dx}}\left[ {{{\left( {f(x)} \right)}^n}} \right] = \left[ {n{{\left( {f(x)} \right)}^{n - 1}}} \right]\left[ {\dfrac{d}{{dx}}\left( {f(x)} \right)} \right]$ and $\dfrac{d}{{dx}}\left[ {\sin x} \right] = \cos x$.
Complete step-by-step answer:
Let us suppose the given function whose derivative is required as $y = {\left( {\sin x} \right)^n}$
Differentiating the above equation on both sides with respect to x, we get
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left[ {{{\left( {\sin x} \right)}^n}} \right]{\text{ }} \to (1)$
As we know that $\dfrac{d}{{dx}}\left[ {{{\left( {f(x)} \right)}^n}} \right] = \left[ {n{{\left( {f(x)} \right)}^{n - 1}}} \right]\left[ {\dfrac{d}{{dx}}\left( {f(x)} \right)} \right]$
Using the above formula, equation (1) becomes
$\dfrac{{dy}}{{dx}} = n{\left( {\sin x} \right)^{n - 1}}\dfrac{d}{{dx}}\left[ {\sin x} \right]{\text{ }} \to {\text{(2)}}$
Also we know that $\dfrac{d}{{dx}}\left[ {\sin x} \right] = \cos x$
Using the above formula, equation (2) becomes
$\dfrac{{dy}}{{dx}} = n{\left( {\sin x} \right)^{n - 1}}\left[ {\cos x} \right]$
Hence, the derivative of the function ${\left( {\sin x} \right)^n}$ is $n{\left( {\sin x} \right)^{n - 1}}\left[ {\cos x} \right]$.
Note- In this particular problem, the function whose derivative is required consists of a constant i.e., n and the variable is x. Here, the derivative means the first derivative of the given function in x. If we would have been asked for the second derivative then the first derivative obtained i.e., $\dfrac{{dy}}{{dx}} = n{\left( {\sin x} \right)^{n - 1}}\left[ {\cos x} \right]$ needed to be differentiated once again with respect to x.
Complete step-by-step answer:
Let us suppose the given function whose derivative is required as $y = {\left( {\sin x} \right)^n}$
Differentiating the above equation on both sides with respect to x, we get
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left[ {{{\left( {\sin x} \right)}^n}} \right]{\text{ }} \to (1)$
As we know that $\dfrac{d}{{dx}}\left[ {{{\left( {f(x)} \right)}^n}} \right] = \left[ {n{{\left( {f(x)} \right)}^{n - 1}}} \right]\left[ {\dfrac{d}{{dx}}\left( {f(x)} \right)} \right]$
Using the above formula, equation (1) becomes
$\dfrac{{dy}}{{dx}} = n{\left( {\sin x} \right)^{n - 1}}\dfrac{d}{{dx}}\left[ {\sin x} \right]{\text{ }} \to {\text{(2)}}$
Also we know that $\dfrac{d}{{dx}}\left[ {\sin x} \right] = \cos x$
Using the above formula, equation (2) becomes
$\dfrac{{dy}}{{dx}} = n{\left( {\sin x} \right)^{n - 1}}\left[ {\cos x} \right]$
Hence, the derivative of the function ${\left( {\sin x} \right)^n}$ is $n{\left( {\sin x} \right)^{n - 1}}\left[ {\cos x} \right]$.
Note- In this particular problem, the function whose derivative is required consists of a constant i.e., n and the variable is x. Here, the derivative means the first derivative of the given function in x. If we would have been asked for the second derivative then the first derivative obtained i.e., $\dfrac{{dy}}{{dx}} = n{\left( {\sin x} \right)^{n - 1}}\left[ {\cos x} \right]$ needed to be differentiated once again with respect to x.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE