
How do you find the derivative of $\left| x-2 \right|$?
Answer
552.3k+ views
Hint: In this problem we need to calculate the derivative of the given function. We can observe that the given function has absolute function. So, we will consider the given function as $\sqrt{{{\left( x-2 \right)}^{2}}}$. Now we will use the substitution method and substitute the value $u=x-2$. Now we will differentiate the $u$ with respect to $x$ as well as we will differentiate the given equation with respect to $x$. Now we will simplify the obtained equation by using the differentiation value of $u$. After substituting this value and simplifying the obtained equation, we will get the required result.
Complete step by step solution:
Given that, $\left| x-2 \right|$.
Here in the above equation, we can observe the absolute function, so we can write the above equation as
$\Rightarrow f\left( x \right)=\sqrt{{{\left( x-2 \right)}^{2}}}$
Let us substitute $u=x-2$ in the above equation, then we will get
$\Rightarrow f\left( x \right)=\sqrt{{{u}^{2}}}$
Differentiating the above equation with respect to $x$, then we will get
$\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left( \sqrt{{{u}^{2}}} \right)$
We have the differentiation formula $\dfrac{d}{dx}\left( \sqrt{x} \right)=\dfrac{1}{2\sqrt{x}}$. Applying this formula in the above equation, then we will get
$\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{1}{2\sqrt{{{u}^{2}}}}\dfrac{d}{dx}\left( {{u}^{2}} \right)$
Again, we have the differentiation formula $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$. Applying this formula in the above equation, then we will have
$\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{1}{2\sqrt{{{u}^{2}}}}\left( 2u \right)\dfrac{du}{dx}...\left( \text{i} \right)$
To find the derivative of the given equation, we need to have the value of $\dfrac{du}{dx}$. We have $u=x-2$, so the value of $\dfrac{du}{dx}$ will be
$\begin{align}
& \dfrac{du}{dx}=\dfrac{d}{dx}\left( x-2 \right) \\
& \Rightarrow \dfrac{du}{dx}=1-0 \\
& \Rightarrow \dfrac{du}{dx}=1 \\
\end{align}$
Substituting this value in the equation $\left( \text{i} \right)$ and simplifying, then we will get
$\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{u}{\sqrt{{{u}^{2}}}}\left( 1 \right)$
Substituting the all the values we have, then we will get the derivative of the given equation as
$\therefore {{f}^{'}}\left( x \right)=\dfrac{x-2}{\left| x-2 \right|}$
Note: We can directly find the derivative of the given equation by using the differentiation formula $\dfrac{d}{dx}\left( \left| f\left( x \right) \right| \right)=\dfrac{f\left( x \right)}{\left| f\left( x \right) \right|}$. From this formula we can have the derivative of the given function as
$\Rightarrow \dfrac{d}{dx}\left( \left| x-2 \right| \right)=\dfrac{x-2}{\left| x-2 \right|}$
From both the methods we got the same result.
Complete step by step solution:
Given that, $\left| x-2 \right|$.
Here in the above equation, we can observe the absolute function, so we can write the above equation as
$\Rightarrow f\left( x \right)=\sqrt{{{\left( x-2 \right)}^{2}}}$
Let us substitute $u=x-2$ in the above equation, then we will get
$\Rightarrow f\left( x \right)=\sqrt{{{u}^{2}}}$
Differentiating the above equation with respect to $x$, then we will get
$\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left( \sqrt{{{u}^{2}}} \right)$
We have the differentiation formula $\dfrac{d}{dx}\left( \sqrt{x} \right)=\dfrac{1}{2\sqrt{x}}$. Applying this formula in the above equation, then we will get
$\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{1}{2\sqrt{{{u}^{2}}}}\dfrac{d}{dx}\left( {{u}^{2}} \right)$
Again, we have the differentiation formula $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$. Applying this formula in the above equation, then we will have
$\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{1}{2\sqrt{{{u}^{2}}}}\left( 2u \right)\dfrac{du}{dx}...\left( \text{i} \right)$
To find the derivative of the given equation, we need to have the value of $\dfrac{du}{dx}$. We have $u=x-2$, so the value of $\dfrac{du}{dx}$ will be
$\begin{align}
& \dfrac{du}{dx}=\dfrac{d}{dx}\left( x-2 \right) \\
& \Rightarrow \dfrac{du}{dx}=1-0 \\
& \Rightarrow \dfrac{du}{dx}=1 \\
\end{align}$
Substituting this value in the equation $\left( \text{i} \right)$ and simplifying, then we will get
$\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{u}{\sqrt{{{u}^{2}}}}\left( 1 \right)$
Substituting the all the values we have, then we will get the derivative of the given equation as
$\therefore {{f}^{'}}\left( x \right)=\dfrac{x-2}{\left| x-2 \right|}$
Note: We can directly find the derivative of the given equation by using the differentiation formula $\dfrac{d}{dx}\left( \left| f\left( x \right) \right| \right)=\dfrac{f\left( x \right)}{\left| f\left( x \right) \right|}$. From this formula we can have the derivative of the given function as
$\Rightarrow \dfrac{d}{dx}\left( \left| x-2 \right| \right)=\dfrac{x-2}{\left| x-2 \right|}$
From both the methods we got the same result.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

