
Find the derivative of $\tan \left( {ax + b} \right)$ from the first principle?
Answer
479.1k+ views
Hint: There are two ways to do this question. One way is by directly applying the formula or we can say chain rule of differentiation. The other way is doing it by using the first principle. In first principle we have to use a formula \[f'(x) = {\lim _{h \to 0}}\dfrac{{f(x + h) - f(x)}}{h}\] where $f(x) = \tan (ax + b)$ to do this question.
Formula used: \[f'(x) = {\lim _{h \to 0}}\dfrac{{f(x + h) - f(x)}}{h}\]
Complete step by step solution:
Using the derivative definition, if:
\[ \Rightarrow f(x) = tan(ax + b)\]
Then, the derivative f'(x) is given by:
\[f'(x) = {\lim _{h \to 0}}\dfrac{{f(x + h) - f(x)}}{h}\]
\[ \Rightarrow li{m_{h \to 0}} = \dfrac{{tan(a(x + h) + b) - tan(ax + b)}}{h}\]
Now using the formula $\tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$
\[ \Rightarrow li{m_{h \to 0}} = \dfrac{{\dfrac{{tan(ax + b) + tanah}}{{1 - tan(ax + b)tanah}} - tan(ax + b)}}{h}\]
Now, taking L.C.M
$ \Rightarrow li{m_{h \to 0}}\dfrac{{\dfrac{{tan(ax + b) + tanah - tan\left( {ax + b} \right)(1 - tan(ax + b)tanah)}}{{1 - tan(ax + b)tanah}}}}{h}$
On simplification, we get
$ \Rightarrow li{m_{h \to 0}}\dfrac{{tan(ax + b) + tanah - tan(ax + b) + tan2(ax + b)tanah}}{{h(1 - tan(ax + b)tanah)}}$
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{tanah(1 + ta{n^2}(ax + b))}}{{h(1 - tan(ax + b)tanah)}}\]
Now, separating the terms
$ \Rightarrow li{m_{h \to 0}}\dfrac{{1 + ta{n^2}(ax + b)}}{{1 - tan(ax + b)tanah}} \cdot \dfrac{{tanah}}{h}$
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{1 + tan2(ax + b)}}{{1 - tan(ax + b)tanah}} \cdot li{m_{h \to 0}}\dfrac{{tanah}}{h}\]
Consider the first limit
\[{L_1} = li{m_{h \to 0}}\dfrac{{1 + tan2(ax + b)}}{{1 - tan(ax + b)tanah}}\]
\[ \Rightarrow \dfrac{{1 + tan2(ax + b)}}{{1 - tan(ax + b)0}}\]
\[ \Rightarrow 1 + ta{n^2}(ax + b)\]
\[ \Rightarrow se{c^2}(ax + b)\]
And, now the second limit:
\[{L_2} = li{m_{h \to 0}}\dfrac{{tanah}}{h}\]
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{sinah}}{{cosah}} \cdot \dfrac{1}{h}\]
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{sinah}}{h} \cdot \dfrac{1}{{cosah}}\]
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{asinah}}{{ah}} \cdot \dfrac{1}{{cosah}}\]
Now, splitting the limits
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{asinah}}{{ah}} \cdot li{m_{h \to 0}}\dfrac{1}{{cosah}}\]
\[ \Rightarrow a\;li{m_{\theta \to 0}}\dfrac{{sin\theta }}{\theta } \cdot li{m_{h \to 0}}\dfrac{1}{{cosah}}\]
And for this limit we have:
\[ \Rightarrow li{m_{\theta \to 0}}\dfrac{{sin\theta }}{\theta } = 1\;and\;li{m_{h \to 0}}\dfrac{1}{{cosah}} = 1\]
Leading to:
\[{L_2} = a\]
Combining these results, we have
$ \Rightarrow f'(x) = se{c^2}(ax + b) \cdot a$
$ \Rightarrow ase{c^2}(ax + b)$
Therefore, the required derivative is $ase{c^2}(ax + b)$.
Note:
Derivative by first principle refers to using algebra to find a general expression for the slope of a curve. It is also known as the delta method. The derivative is a measure of the instantaneous rate of change, which is equal to \[f'(x) = {\lim _{h \to 0}}\dfrac{{f(x + h) - f(x)}}{h}\]
Formula used: \[f'(x) = {\lim _{h \to 0}}\dfrac{{f(x + h) - f(x)}}{h}\]
Complete step by step solution:
Using the derivative definition, if:
\[ \Rightarrow f(x) = tan(ax + b)\]
Then, the derivative f'(x) is given by:
\[f'(x) = {\lim _{h \to 0}}\dfrac{{f(x + h) - f(x)}}{h}\]
\[ \Rightarrow li{m_{h \to 0}} = \dfrac{{tan(a(x + h) + b) - tan(ax + b)}}{h}\]
Now using the formula $\tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$
\[ \Rightarrow li{m_{h \to 0}} = \dfrac{{\dfrac{{tan(ax + b) + tanah}}{{1 - tan(ax + b)tanah}} - tan(ax + b)}}{h}\]
Now, taking L.C.M
$ \Rightarrow li{m_{h \to 0}}\dfrac{{\dfrac{{tan(ax + b) + tanah - tan\left( {ax + b} \right)(1 - tan(ax + b)tanah)}}{{1 - tan(ax + b)tanah}}}}{h}$
On simplification, we get
$ \Rightarrow li{m_{h \to 0}}\dfrac{{tan(ax + b) + tanah - tan(ax + b) + tan2(ax + b)tanah}}{{h(1 - tan(ax + b)tanah)}}$
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{tanah(1 + ta{n^2}(ax + b))}}{{h(1 - tan(ax + b)tanah)}}\]
Now, separating the terms
$ \Rightarrow li{m_{h \to 0}}\dfrac{{1 + ta{n^2}(ax + b)}}{{1 - tan(ax + b)tanah}} \cdot \dfrac{{tanah}}{h}$
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{1 + tan2(ax + b)}}{{1 - tan(ax + b)tanah}} \cdot li{m_{h \to 0}}\dfrac{{tanah}}{h}\]
Consider the first limit
\[{L_1} = li{m_{h \to 0}}\dfrac{{1 + tan2(ax + b)}}{{1 - tan(ax + b)tanah}}\]
\[ \Rightarrow \dfrac{{1 + tan2(ax + b)}}{{1 - tan(ax + b)0}}\]
\[ \Rightarrow 1 + ta{n^2}(ax + b)\]
\[ \Rightarrow se{c^2}(ax + b)\]
And, now the second limit:
\[{L_2} = li{m_{h \to 0}}\dfrac{{tanah}}{h}\]
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{sinah}}{{cosah}} \cdot \dfrac{1}{h}\]
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{sinah}}{h} \cdot \dfrac{1}{{cosah}}\]
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{asinah}}{{ah}} \cdot \dfrac{1}{{cosah}}\]
Now, splitting the limits
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{asinah}}{{ah}} \cdot li{m_{h \to 0}}\dfrac{1}{{cosah}}\]
\[ \Rightarrow a\;li{m_{\theta \to 0}}\dfrac{{sin\theta }}{\theta } \cdot li{m_{h \to 0}}\dfrac{1}{{cosah}}\]
And for this limit we have:
\[ \Rightarrow li{m_{\theta \to 0}}\dfrac{{sin\theta }}{\theta } = 1\;and\;li{m_{h \to 0}}\dfrac{1}{{cosah}} = 1\]
Leading to:
\[{L_2} = a\]
Combining these results, we have
$ \Rightarrow f'(x) = se{c^2}(ax + b) \cdot a$
$ \Rightarrow ase{c^2}(ax + b)$
Therefore, the required derivative is $ase{c^2}(ax + b)$.
Note:
Derivative by first principle refers to using algebra to find a general expression for the slope of a curve. It is also known as the delta method. The derivative is a measure of the instantaneous rate of change, which is equal to \[f'(x) = {\lim _{h \to 0}}\dfrac{{f(x + h) - f(x)}}{h}\]
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

