Answer
Verified
471k+ views
Hint: For this question, we will directly use the formula of first derivative principle to find the derivative. The formula is given below as: \[f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}\]. So, use this concept to reach the solution of the given problem.
Complete step by step answer:
We have to find out the derivative of \[\tan x\]. So, our function will be \[f\left( x \right) = \tan x\].
According to the first derivative principle, we have
\[
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\tan \left( {x + h} \right) - \tan x}}{h} \\
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{{\sin \left( {x + h} \right)}}{{\cos \left( {x + h} \right)}} - \dfrac{{\sin x}}{{\cos x}}}}{h}{\text{ }}\left[ {\because \tan A = \dfrac{{\sin A}}{{\cos A}}} \right] \\
\]
Taking LCM and simplifying further, we have
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {x + h} \right)\cos x - \cos \left( {x + h} \right)\sin x}}{{h\cos x\cos \left( {x + h} \right)}}\]
By using the formula, \[\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right)\], we have
\[
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {x + h - x} \right)}}{{h\cos x\cos \left( {x + h} \right)}} \\
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( h \right)}}{{h\cos x\cos \left( {x + h} \right)}} \\
\]
Splitting the limits, we have
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( h \right)}}{h} \times \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{\cos x\cos \left( {x + h} \right)}}\]
By using the formula, \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\], we have
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{\cos x\cos \left( {x + h} \right)}}\]
We know that for \[h \to 0\] we have \[\cos \left( {x + h} \right) \simeq \cos x\]
\[
\Rightarrow f'\left( x \right) = \dfrac{1}{{\cos x\cos x}} \\
\Rightarrow f'\left( x \right) = \dfrac{1}{{{{\cos }^2}x}} \\
\therefore f'\left( x \right) = {\sec ^2}x\,{\text{ }}\left[ {\because \sec x = \dfrac{1}{{\cos x}}} \right] \\
\]
Thus, the derivative of \[\tan x\] using the first derivative principle is \[{\sec ^2}x\].
Note: Using the first derivative method, it consumes much time. And for smaller functions, we can find out the derivative using the first derivative method. But if the function is complex, then it is too difficult to solve using this method. Then we follow conventional methods for finding the derivative.
Complete step by step answer:
We have to find out the derivative of \[\tan x\]. So, our function will be \[f\left( x \right) = \tan x\].
According to the first derivative principle, we have
\[
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\tan \left( {x + h} \right) - \tan x}}{h} \\
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{{\sin \left( {x + h} \right)}}{{\cos \left( {x + h} \right)}} - \dfrac{{\sin x}}{{\cos x}}}}{h}{\text{ }}\left[ {\because \tan A = \dfrac{{\sin A}}{{\cos A}}} \right] \\
\]
Taking LCM and simplifying further, we have
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {x + h} \right)\cos x - \cos \left( {x + h} \right)\sin x}}{{h\cos x\cos \left( {x + h} \right)}}\]
By using the formula, \[\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right)\], we have
\[
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {x + h - x} \right)}}{{h\cos x\cos \left( {x + h} \right)}} \\
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( h \right)}}{{h\cos x\cos \left( {x + h} \right)}} \\
\]
Splitting the limits, we have
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( h \right)}}{h} \times \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{\cos x\cos \left( {x + h} \right)}}\]
By using the formula, \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\], we have
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{\cos x\cos \left( {x + h} \right)}}\]
We know that for \[h \to 0\] we have \[\cos \left( {x + h} \right) \simeq \cos x\]
\[
\Rightarrow f'\left( x \right) = \dfrac{1}{{\cos x\cos x}} \\
\Rightarrow f'\left( x \right) = \dfrac{1}{{{{\cos }^2}x}} \\
\therefore f'\left( x \right) = {\sec ^2}x\,{\text{ }}\left[ {\because \sec x = \dfrac{1}{{\cos x}}} \right] \\
\]
Thus, the derivative of \[\tan x\] using the first derivative principle is \[{\sec ^2}x\].
Note: Using the first derivative method, it consumes much time. And for smaller functions, we can find out the derivative using the first derivative method. But if the function is complex, then it is too difficult to solve using this method. Then we follow conventional methods for finding the derivative.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE