
Find the derivative of the following:
\[-\dfrac{2651}{504\sqrt[315]{{{x}^{2966}}}}\]
Answer
622.2k+ views
Hint: Don’t get confused with the large numbers. Use the formula \[\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{\dfrac{n}{m}}}} \right)=\dfrac{d}{dx}\left( {{x}^{-\dfrac{n}{m}}} \right)=\dfrac{-n}{m}{{x}^{\dfrac{-n}{m}-1}}\]to find the derivative.
Complete step by step solution:
The given function is \[-\dfrac{2651}{504\sqrt[315]{{{x}^{2966}}}}\].
Taking out the constant term, we get
\[\dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{-2651}{504}\times \dfrac{d}{dx}\left\{ \dfrac{1}{\sqrt[315]{{{x}^{2966}}}} \right\}\]
The can be written as,
\[\dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{-2651}{504}\times \dfrac{d}{dx}\left\{ \dfrac{1}{{{x}^{\dfrac{2966}{315}}}} \right\}\]
So the above equation can be re-written using the formula \[\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{\dfrac{n}{m}}}} \right)=\dfrac{d}{dx}\left( {{x}^{-\dfrac{n}{m}}} \right)=\dfrac{-n}{m}{{x}^{\dfrac{-n}{m}-1}},\]
\[\begin{align}
& \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{-2651}{504}\times \dfrac{-2966}{315}\times {{x}^{\dfrac{-2966}{315}-1}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{-2651}{504}\times \dfrac{-2966}{315}\times {{x}^{\dfrac{-2966-315}{315}}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{-2651}{504}\times \dfrac{-2966}{315}\times {{x}^{\dfrac{-3281}{315}}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 2966}{504\times 315}\times \dfrac{1}{\sqrt[315]{{{x}^{3281}}}} \\
\end{align}\]
Dividing throughout by ‘2’, we get
\[\Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{\sqrt[315]{{{x}^{3150+131}}}}\]
Now applying the formula \[{{x}^{m+n}}={{x}^{m}}.{{x}^{n}}\] under the root, we have
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{\sqrt[315]{{{x}^{3150}}.{{x}^{131}}}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{\sqrt[315]{{{x}^{3150}}}\times \sqrt[315]{{{x}^{131}}}} \\
\end{align}\]
Now, by applying the formula \[{{x}^{mn}}={{({{x}^{m}})}^{n}}\] under the root, we get
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{\sqrt[315]{{{({{x}^{10}})}^{315}}}\times \sqrt[315]{{{x}^{131}}}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{{{x}^{10}}\times \sqrt[315]{{{x}^{131}}}} \\
\end{align}\]
Here we can observe that $(315-131=184)$, so we will rationalise by \[\sqrt[315]{{{x}^{184}}}\], we get
\[\begin{align}
& \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\dfrac{1}{{{x}^{10}}}\times \dfrac{1}{\sqrt[315]{{{x}^{131}}}}\times \dfrac{\sqrt[315]{{{x}^{184}}}}{\sqrt[315]{{{x}^{184}}}} \\
& \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{{{x}^{10}}}\times \dfrac{\sqrt[315]{{{x}^{184}}}}{\sqrt[315]{{{x}^{131}}\times {{x}^{184}}}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{{{x}^{10}}}\dfrac{\sqrt[315]{{{x}^{184}}}}{\sqrt[315]{{{x}^{315}}}} \\
& \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{{{x}^{10}}}\dfrac{\sqrt[315]{{{x}^{184}}}}{x} \\
\end{align}\]
\[\dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\dfrac{\sqrt[315]{{{x}^{184}}}}{{{x}^{11}}}\]
Note: In this problem looking at the bigger values the student may get confused. We should always try to solve the problem using a simple basic formula. The student sometimes gets confused to remove the constant term while deriving and will make mistakes.
Complete step by step solution:
The given function is \[-\dfrac{2651}{504\sqrt[315]{{{x}^{2966}}}}\].
Taking out the constant term, we get
\[\dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{-2651}{504}\times \dfrac{d}{dx}\left\{ \dfrac{1}{\sqrt[315]{{{x}^{2966}}}} \right\}\]
The can be written as,
\[\dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{-2651}{504}\times \dfrac{d}{dx}\left\{ \dfrac{1}{{{x}^{\dfrac{2966}{315}}}} \right\}\]
So the above equation can be re-written using the formula \[\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{\dfrac{n}{m}}}} \right)=\dfrac{d}{dx}\left( {{x}^{-\dfrac{n}{m}}} \right)=\dfrac{-n}{m}{{x}^{\dfrac{-n}{m}-1}},\]
\[\begin{align}
& \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{-2651}{504}\times \dfrac{-2966}{315}\times {{x}^{\dfrac{-2966}{315}-1}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{-2651}{504}\times \dfrac{-2966}{315}\times {{x}^{\dfrac{-2966-315}{315}}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{-2651}{504}\times \dfrac{-2966}{315}\times {{x}^{\dfrac{-3281}{315}}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 2966}{504\times 315}\times \dfrac{1}{\sqrt[315]{{{x}^{3281}}}} \\
\end{align}\]
Dividing throughout by ‘2’, we get
\[\Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{\sqrt[315]{{{x}^{3150+131}}}}\]
Now applying the formula \[{{x}^{m+n}}={{x}^{m}}.{{x}^{n}}\] under the root, we have
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{\sqrt[315]{{{x}^{3150}}.{{x}^{131}}}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{\sqrt[315]{{{x}^{3150}}}\times \sqrt[315]{{{x}^{131}}}} \\
\end{align}\]
Now, by applying the formula \[{{x}^{mn}}={{({{x}^{m}})}^{n}}\] under the root, we get
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{\sqrt[315]{{{({{x}^{10}})}^{315}}}\times \sqrt[315]{{{x}^{131}}}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{{{x}^{10}}\times \sqrt[315]{{{x}^{131}}}} \\
\end{align}\]
Here we can observe that $(315-131=184)$, so we will rationalise by \[\sqrt[315]{{{x}^{184}}}\], we get
\[\begin{align}
& \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\dfrac{1}{{{x}^{10}}}\times \dfrac{1}{\sqrt[315]{{{x}^{131}}}}\times \dfrac{\sqrt[315]{{{x}^{184}}}}{\sqrt[315]{{{x}^{184}}}} \\
& \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{{{x}^{10}}}\times \dfrac{\sqrt[315]{{{x}^{184}}}}{\sqrt[315]{{{x}^{131}}\times {{x}^{184}}}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{{{x}^{10}}}\dfrac{\sqrt[315]{{{x}^{184}}}}{\sqrt[315]{{{x}^{315}}}} \\
& \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{{{x}^{10}}}\dfrac{\sqrt[315]{{{x}^{184}}}}{x} \\
\end{align}\]
\[\dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\dfrac{\sqrt[315]{{{x}^{184}}}}{{{x}^{11}}}\]
Note: In this problem looking at the bigger values the student may get confused. We should always try to solve the problem using a simple basic formula. The student sometimes gets confused to remove the constant term while deriving and will make mistakes.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

What are the advantages of vegetative propagation class 12 biology CBSE

Suicide bags of cells are aEndoplasmic reticulum bLysosome class 12 biology CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

