
Find the derivative of x at x = 1.
Answer
623.1k+ views
Hint- Try to solve using the definition of derivative i.e. \[f\prime \left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}\]
Let \[f\left( x \right) = x\]
We need to find the derivative of \[f\left( x \right)\]at\[{\text{x = 1}}\].
\[{\text{i}}{\text{.e}}{\text{. }}f\prime \left( 1 \right)\]
We know that,
\[f\prime \left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}{\text{ }} \ldots \left( 1 \right)\]
Here, \[f\left( x \right) = x\]
So, \[{\text{ }}f\left( {x + h} \right) = x + h\]
Putting these values in equation $\left( 1 \right)$, we get
\[
f\prime \left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {x + h} \right) - x}}{h} \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{{x + h - x}}{h} \\
= \mathop {\lim }\limits_{h \to 0} {\text{ }}\dfrac{h}{h} \\
= \mathop {\lim }\limits_{h \to 0} {\text{ }}1 \\
= 1 \\
\]
Hence, \[f\prime \left( x \right) = 1\]
Putting $x = 1$, we get
\[f\prime \left( 1 \right) = 1\]
Hence, the derivative of $x$ at $x=1$ is $1$.
Note- In order to calculate the derivative of a certain function, we assume that function to be $f\left( x \right)$ and apply the formula of the derivative and later put the value of $x$ for which the derivative is asked to calculate.
Let \[f\left( x \right) = x\]
We need to find the derivative of \[f\left( x \right)\]at\[{\text{x = 1}}\].
\[{\text{i}}{\text{.e}}{\text{. }}f\prime \left( 1 \right)\]
We know that,
\[f\prime \left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}{\text{ }} \ldots \left( 1 \right)\]
Here, \[f\left( x \right) = x\]
So, \[{\text{ }}f\left( {x + h} \right) = x + h\]
Putting these values in equation $\left( 1 \right)$, we get
\[
f\prime \left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {x + h} \right) - x}}{h} \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{{x + h - x}}{h} \\
= \mathop {\lim }\limits_{h \to 0} {\text{ }}\dfrac{h}{h} \\
= \mathop {\lim }\limits_{h \to 0} {\text{ }}1 \\
= 1 \\
\]
Hence, \[f\prime \left( x \right) = 1\]
Putting $x = 1$, we get
\[f\prime \left( 1 \right) = 1\]
Hence, the derivative of $x$ at $x=1$ is $1$.
Note- In order to calculate the derivative of a certain function, we assume that function to be $f\left( x \right)$ and apply the formula of the derivative and later put the value of $x$ for which the derivative is asked to calculate.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

