Find the diagonal of a square whose side is 14 cm.
Answer
Verified
498.6k+ views
Hint: In this question, we will divide a square into two right angled triangles and then apply Pythagoras theorem to one of them to find the length of the diagonal.
Complete step-by-step answer:
Let us consider a square ABCD with each side of length 14 cm. Let us now draw a diagonal AC by joining point A and C of the square.
Now, in a square, all its four sides are equal in length. And here, all four sides of the square are of the length 14 cm.
Therefore, \[\text{AB=BC=CD=DA=14 cm}\].
And, all the angles of a square are ${{90}^{\circ }}$.
Therefore, $\angle \text{ABC}={{90}^{\circ }}$.
Also, according to Pythagoras theorem, in a right-angled triangle PQR, right angled at Q,$\text{P}{{\text{Q}}^{\text{2}}}\text{+Q}{{\text{R}}^{\text{2}}}\text{=P}{{\text{R}}^{\text{2}}}$.
Now, considering a triangle ABC in a square ABCD.
It is right angled at B, so applying Pythagoras theorem here, we get,
$\text{A}{{\text{B}}^{\text{2}}}\text{+B}{{\text{C}}^{\text{2}}}\text{=A}{{\text{C}}^{\text{2}}}$
Putting the values of AB and BC here, we get,
$\begin{align}
& \text{1}{{\text{4}}^{\text{2}}}\text{c}{{\text{m}}^{2}}\text{+1}{{\text{4}}^{\text{2}}}\text{c}{{\text{m}}^{2}}\text{=A}{{\text{C}}^{\text{2}}} \\
& \Rightarrow \text{A}{{\text{C}}^{\text{2}}}\text{=}\left( \text{1}{{\text{4}}^{\text{2}}}\text{+1}{{\text{4}}^{\text{2}}} \right)\text{c}{{\text{m}}^{\text{2}}} \\
& \Rightarrow \text{A}{{\text{C}}^{\text{2}}}\text{=2}\times \text{1}{{\text{4}}^{\text{2}}}\text{c}{{\text{m}}^{\text{2}}} \\
\end{align}$
Taking square root on both sides of the equation here, we get,
$\begin{align}
& \sqrt{\text{A}{{\text{C}}^{\text{2}}}}\text{=}\sqrt{\text{2 }\!\!\times\!\!\text{ 1}{{\text{4}}^{\text{2}}}\,\text{c}{{\text{m}}^{\text{2}}}} \\
& \Rightarrow \sqrt{\text{A}{{\text{C}}^{\text{2}}}}\text{=}\sqrt{\text{2}}\sqrt{\text{1}{{\text{4}}^{\text{2}}}\,\text{c}{{\text{m}}^{\text{2}}}} \\
\end{align}$
Here, cancelling square root with whole square, we get,
$\text{AC=14}\sqrt{\text{2}}\,\text{cm}$.
Hence, the diagonal of a square whose side is 14 cm is $14\sqrt{2}$ cm.
Note: This question can also be done directly with the formula that, in all squares, the length of a diagonal is always $\sqrt{2}$ times the length of the side of the square.
Complete step-by-step answer:
Let us consider a square ABCD with each side of length 14 cm. Let us now draw a diagonal AC by joining point A and C of the square.
Now, in a square, all its four sides are equal in length. And here, all four sides of the square are of the length 14 cm.
Therefore, \[\text{AB=BC=CD=DA=14 cm}\].
And, all the angles of a square are ${{90}^{\circ }}$.
Therefore, $\angle \text{ABC}={{90}^{\circ }}$.
Also, according to Pythagoras theorem, in a right-angled triangle PQR, right angled at Q,$\text{P}{{\text{Q}}^{\text{2}}}\text{+Q}{{\text{R}}^{\text{2}}}\text{=P}{{\text{R}}^{\text{2}}}$.
Now, considering a triangle ABC in a square ABCD.
It is right angled at B, so applying Pythagoras theorem here, we get,
$\text{A}{{\text{B}}^{\text{2}}}\text{+B}{{\text{C}}^{\text{2}}}\text{=A}{{\text{C}}^{\text{2}}}$
Putting the values of AB and BC here, we get,
$\begin{align}
& \text{1}{{\text{4}}^{\text{2}}}\text{c}{{\text{m}}^{2}}\text{+1}{{\text{4}}^{\text{2}}}\text{c}{{\text{m}}^{2}}\text{=A}{{\text{C}}^{\text{2}}} \\
& \Rightarrow \text{A}{{\text{C}}^{\text{2}}}\text{=}\left( \text{1}{{\text{4}}^{\text{2}}}\text{+1}{{\text{4}}^{\text{2}}} \right)\text{c}{{\text{m}}^{\text{2}}} \\
& \Rightarrow \text{A}{{\text{C}}^{\text{2}}}\text{=2}\times \text{1}{{\text{4}}^{\text{2}}}\text{c}{{\text{m}}^{\text{2}}} \\
\end{align}$
Taking square root on both sides of the equation here, we get,
$\begin{align}
& \sqrt{\text{A}{{\text{C}}^{\text{2}}}}\text{=}\sqrt{\text{2 }\!\!\times\!\!\text{ 1}{{\text{4}}^{\text{2}}}\,\text{c}{{\text{m}}^{\text{2}}}} \\
& \Rightarrow \sqrt{\text{A}{{\text{C}}^{\text{2}}}}\text{=}\sqrt{\text{2}}\sqrt{\text{1}{{\text{4}}^{\text{2}}}\,\text{c}{{\text{m}}^{\text{2}}}} \\
\end{align}$
Here, cancelling square root with whole square, we get,
$\text{AC=14}\sqrt{\text{2}}\,\text{cm}$.
Hence, the diagonal of a square whose side is 14 cm is $14\sqrt{2}$ cm.
Note: This question can also be done directly with the formula that, in all squares, the length of a diagonal is always $\sqrt{2}$ times the length of the side of the square.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
What is Commercial Farming ? What are its types ? Explain them with Examples
List out three methods of soil conservation
Complete the following word chain of verbs Write eat class 10 english CBSE
Compare and contrast a weekly market and a shopping class 10 social science CBSE
Imagine that you have the opportunity to interview class 10 english CBSE
On the outline map of India mark the following appropriately class 10 social science. CBSE