Answer
Verified
468.6k+ views
Hint: In the simplest form domain is all the values that go into the function and range is all the functions that come out of it.
Complete step-by-step answer:
Let us define the domain and range of
y =tan x
The domain of the function y =tan x is
$x \in (-\dfrac{\pi}{2},\dfrac{\pi}{2})$
The range of the function y =tan x is
$ y \in (-\infty , +\infty )$
The function $ y= tan ^{-1} x$ is symmetric to the function y=tan x with respect the line y=x
Therefore, the domain is $ x \in (-\infty , +\infty )$
and the range is $y \in (-\dfrac{\pi}{2},\dfrac{\pi}{2})$
Now we can draw the graph of the function from the observation and discuss it.
This the graph for the $y= tan ^{-1} x$ function.
Since the inverse function is obtained by reflecting the graph about the line y=x ,
The vertical asymptotes of the tangent function become horizontal asymptotes of the inverse tangent function.
As $\theta$ approaches $\infty , tan ^{-1} \theta$ approaches $-\dfrac{\pi}{2} \,as\, \theta \Rightarrow \theta , tan ^{-1} \theta \Rightarrow \dfrac{\pi}{2}$
And by reflecting the function we get the graph of the function.
Note: In the first step students need to take this assumption y= tan x otherwise they would not be able to solve the problem. Also the students need to clearly understand the meaning of domain and range of a function to solve the problem.
Complete step-by-step answer:
Let us define the domain and range of
y =tan x
The domain of the function y =tan x is
$x \in (-\dfrac{\pi}{2},\dfrac{\pi}{2})$
The range of the function y =tan x is
$ y \in (-\infty , +\infty )$
The function $ y= tan ^{-1} x$ is symmetric to the function y=tan x with respect the line y=x
Therefore, the domain is $ x \in (-\infty , +\infty )$
and the range is $y \in (-\dfrac{\pi}{2},\dfrac{\pi}{2})$
Now we can draw the graph of the function from the observation and discuss it.
This the graph for the $y= tan ^{-1} x$ function.
Since the inverse function is obtained by reflecting the graph about the line y=x ,
The vertical asymptotes of the tangent function become horizontal asymptotes of the inverse tangent function.
As $\theta$ approaches $\infty , tan ^{-1} \theta$ approaches $-\dfrac{\pi}{2} \,as\, \theta \Rightarrow \theta , tan ^{-1} \theta \Rightarrow \dfrac{\pi}{2}$
And by reflecting the function we get the graph of the function.
Note: In the first step students need to take this assumption y= tan x otherwise they would not be able to solve the problem. Also the students need to clearly understand the meaning of domain and range of a function to solve the problem.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
Which is the longest day and shortest night in the class 11 sst CBSE
What is the definite integral of zero a constant b class 12 maths CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE