
Find the equation and the length of the common chord of the two circles whose equations are ${x^2} + {y^2} + 3x + 5y + 4 = 0$ and ${x^2} + {y^2} + 5x + 3y + 4 = 0$.
Answer
611.7k+ views
Hint- Here, we will proceed by subtracting the given equations of the two circles in order to obtain the equation of the common chord between these two circles. Then, we will use the formula ${\text{L}} = \dfrac{{2{{\text{R}}_1}{{\text{R}}_2}}}{d}$ in order to find the length of the common chord.
Complete step-by-step answer:
Given equations of the two circles are ${x^2} + {y^2} + 3x + 5y + 4 = 0{\text{ }} \to {\text{(1)}}$ and ${x^2} + {y^2} + 5x + 3y + 4 = 0{\text{ }} \to {\text{(2)}}$
As we know that the equation of the common chord between any two circles can be obtained by subtracting the equations of the two circles.
By subtracting equation (2) from equation (1), we get
$
\Rightarrow {x^2} + {y^2} + 3x + 5y + 4 - \left( {{x^2} + {y^2} + 5x + 3y + 4} \right) = 0 - 0 \\
\Rightarrow {x^2} + {y^2} + 3x + 5y + 4 - {x^2} - {y^2} - 5x - 3y - 4 = 0 \\
\Rightarrow - 2x + 2y = 0 \\
\Rightarrow - x + y = 0 \\
\Rightarrow x = y \\
$
Therefore, the required equation of the common chord of the two given circles is x = y.
Since, the general form of the equation of any circle having centre as C(a,b) and radius as r can be represented as ${\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {r^2}{\text{ }} \to {\text{(3)}}$
Using completing the square method, the given equations of the circle can be rewritten in the same form as given by equation (3).
Rewriting equation (1) in the same form as given by equation (3), we have
$
\Rightarrow {x^2} + 3x + {\left( {\dfrac{3}{2}} \right)^2} - {\left( {\dfrac{3}{2}} \right)^2} + {y^2} + 5y + {\left( {\dfrac{5}{2}} \right)^2} - {\left( {\dfrac{5}{2}} \right)^2} + 4 = 0 \\
\Rightarrow \left[ {{x^2} + 2\left( {\dfrac{3}{2}} \right)\left( x \right) + {{\left( {\dfrac{3}{2}} \right)}^2}} \right] + \left[ {{y^2} + 2\left( {\dfrac{5}{2}} \right)\left( y \right) + {{\left( {\dfrac{5}{2}} \right)}^2}} \right] = {\left( {\dfrac{3}{2}} \right)^2} + {\left( {\dfrac{5}{2}} \right)^2} - 4 \\
\Rightarrow \left[ {{{\left( {x + \dfrac{3}{2}} \right)}^2}} \right] + \left[ {{{\left( {y + \dfrac{5}{2}} \right)}^2}} \right] = \dfrac{9}{4} + \dfrac{{25}}{4} - 4 \\
\Rightarrow {\left[ {x - \left( { - \dfrac{3}{2}} \right)} \right]^2} + {\left[ {y - \left( { - \dfrac{5}{2}} \right)} \right]^2} = \dfrac{{9 + 25 - 16}}{4} \\
\Rightarrow {\left[ {x - \left( { - \dfrac{3}{2}} \right)} \right]^2} + {\left[ {y - \left( { - \dfrac{5}{2}} \right)} \right]^2} = \dfrac{{18}}{4} \\
\Rightarrow {\left[ {x - \left( { - \dfrac{3}{2}} \right)} \right]^2} + {\left[ {y - \left( { - \dfrac{5}{2}} \right)} \right]^2} = \dfrac{9}{2} \\
\Rightarrow {\left[ {x - \left( { - \dfrac{3}{2}} \right)} \right]^2} + {\left[ {y - \left( { - \dfrac{5}{2}} \right)} \right]^2} = {\left( {\dfrac{3}{{\sqrt 2 }}} \right)^2}{\text{ }} \to {\text{(4)}} \\
$
By comparing equations (3) and (4), we get
So, the centre of the circle ${x^2} + {y^2} + 3x + 5y + 4 = 0$ is ${{\text{C}}_1}\left( { - \dfrac{3}{2}, - \dfrac{5}{2}} \right)$ and radius is ${{\text{R}}_1} = \dfrac{3}{{\sqrt 2 }}$
Rewriting equation (2) in the same form as given by equation (3), we have
$
\Rightarrow {x^2} + 5x + {\left( {\dfrac{5}{2}} \right)^2} - {\left( {\dfrac{5}{2}} \right)^2} + {y^2} + 3y + {\left( {\dfrac{3}{2}} \right)^2} - {\left( {\dfrac{3}{2}} \right)^2} + 4 = 0 \\
\Rightarrow \left[ {{x^2} + 2\left( {\dfrac{5}{2}} \right)\left( x \right) + {{\left( {\dfrac{5}{2}} \right)}^2}} \right] + \left[ {{y^2} + 2\left( {\dfrac{3}{2}} \right)\left( y \right) + {{\left( {\dfrac{3}{2}} \right)}^2}} \right] = {\left( {\dfrac{5}{2}} \right)^2} + {\left( {\dfrac{3}{2}} \right)^2} - 4 \\
\Rightarrow \left[ {{{\left( {x + \dfrac{5}{2}} \right)}^2}} \right] + \left[ {{{\left( {y + \dfrac{3}{2}} \right)}^2}} \right] = \dfrac{{25}}{4} + \dfrac{9}{4} - 4 \\
\Rightarrow {\left[ {x - \left( { - \dfrac{5}{2}} \right)} \right]^2} + {\left[ {y - \left( { - \dfrac{3}{2}} \right)} \right]^2} = \dfrac{{25 + 9 - 16}}{4} \\
\Rightarrow {\left[ {x - \left( { - \dfrac{5}{2}} \right)} \right]^2} + {\left[ {y - \left( { - \dfrac{3}{2}} \right)} \right]^2} = \dfrac{{18}}{4} \\
\Rightarrow {\left[ {x - \left( { - \dfrac{5}{2}} \right)} \right]^2} + {\left[ {y - \left( { - \dfrac{3}{2}} \right)} \right]^2} = \dfrac{9}{2} \\
\Rightarrow {\left[ {x - \left( { - \dfrac{5}{2}} \right)} \right]^2} + {\left[ {y - \left( { - \dfrac{3}{2}} \right)} \right]^2} = {\left( {\dfrac{3}{{\sqrt 2 }}} \right)^2}{\text{ }} \to {\text{(5)}} \\
$
By comparing equations (3) and (5), we get
So, the centre of the circle ${x^2} + {y^2} + 5x + 3y + 4 = 0$ is ${{\text{C}}_2}\left( { - \dfrac{5}{2}, - \dfrac{3}{2}} \right)$ and radius is ${{\text{R}}_2} = \dfrac{3}{{\sqrt 2 }}$
According to the distance formula, the distance between any two points A(a,b) and B(c,d) is given by
\[d = \sqrt {{{\left( {c - a} \right)}^2} + {{\left( {d - b} \right)}^2}} \]
Using the above formula, the distance between the centres of the two circles i.e.,${{\text{C}}_1}\left( { - \dfrac{3}{2}, - \dfrac{5}{2}} \right)$ and ${{\text{C}}_2}\left( { - \dfrac{5}{2}, - \dfrac{3}{2}} \right)$ is given by
\[
\Rightarrow d = \sqrt {{{\left[ { - \dfrac{5}{2} - \left( { - \dfrac{3}{2}} \right)} \right]}^2} + {{\left[ { - \dfrac{3}{2} - \left( { - \dfrac{5}{2}} \right)} \right]}^2}} \\
\Rightarrow d = \sqrt {{{\left[ { - \dfrac{5}{2} + \dfrac{3}{2}} \right]}^2} + {{\left[ { - \dfrac{3}{2} + \dfrac{5}{2}} \right]}^2}} \\
\Rightarrow d = \sqrt {{{\left[ {\dfrac{{ - 5 + 3}}{2}} \right]}^2} + {{\left[ {\dfrac{{ - 3 + 5}}{2}} \right]}^2}} \\
\Rightarrow d = \sqrt {{{\left[ {\dfrac{{ - 2}}{2}} \right]}^2} + {{\left[ {\dfrac{2}{2}} \right]}^2}} \\
\Rightarrow d = \sqrt {{{\left[ { - 1} \right]}^2} + {{\left[ 1 \right]}^2}} \\
\Rightarrow d = \sqrt {1 + 1} \\
\Rightarrow d = \sqrt 2 \\
\]
Also, the length of the common tangent between two circles having radii as ${{\text{R}}_1}$ and ${{\text{R}}_2}$ is given by
${\text{L}} = \dfrac{{2{{\text{R}}_1}{{\text{R}}_2}}}{d}{\text{ }} \to {\text{(6)}}$ where d is the distance between the centres of the two given circles.
By putting ${{\text{R}}_1} = \dfrac{3}{{\sqrt 2 }}$, ${{\text{R}}_2} = \dfrac{3}{{\sqrt 2 }}$ and \[d = \sqrt 2 \] in equation (6), we get
\[
\Rightarrow {\text{L}} = \dfrac{{2\left( {\dfrac{3}{{\sqrt 2 }}} \right)\left( {\dfrac{3}{{\sqrt 2 }}} \right)}}{{\sqrt 2 }} \\
\Rightarrow {\text{L}} = \dfrac{{2\left( {\dfrac{9}{2}} \right)}}{{\sqrt 2 }} \\
\Rightarrow {\text{L}} = \dfrac{9}{{\sqrt 2 }} \\
\]
Therefore, the required length of the common chord of the two given circles is \[\dfrac{9}{{\sqrt 2 }}\].
Note- In this particular problem, we have converted the equations of the given two circles in the same form of the equation of any circle which is ${\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {r^2}$ in order to find the centre coordinates of both the circles and their radii which can further be utilized to get the value of the distance between the centres of these circles.
Complete step-by-step answer:
Given equations of the two circles are ${x^2} + {y^2} + 3x + 5y + 4 = 0{\text{ }} \to {\text{(1)}}$ and ${x^2} + {y^2} + 5x + 3y + 4 = 0{\text{ }} \to {\text{(2)}}$
As we know that the equation of the common chord between any two circles can be obtained by subtracting the equations of the two circles.
By subtracting equation (2) from equation (1), we get
$
\Rightarrow {x^2} + {y^2} + 3x + 5y + 4 - \left( {{x^2} + {y^2} + 5x + 3y + 4} \right) = 0 - 0 \\
\Rightarrow {x^2} + {y^2} + 3x + 5y + 4 - {x^2} - {y^2} - 5x - 3y - 4 = 0 \\
\Rightarrow - 2x + 2y = 0 \\
\Rightarrow - x + y = 0 \\
\Rightarrow x = y \\
$
Therefore, the required equation of the common chord of the two given circles is x = y.
Since, the general form of the equation of any circle having centre as C(a,b) and radius as r can be represented as ${\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {r^2}{\text{ }} \to {\text{(3)}}$
Using completing the square method, the given equations of the circle can be rewritten in the same form as given by equation (3).
Rewriting equation (1) in the same form as given by equation (3), we have
$
\Rightarrow {x^2} + 3x + {\left( {\dfrac{3}{2}} \right)^2} - {\left( {\dfrac{3}{2}} \right)^2} + {y^2} + 5y + {\left( {\dfrac{5}{2}} \right)^2} - {\left( {\dfrac{5}{2}} \right)^2} + 4 = 0 \\
\Rightarrow \left[ {{x^2} + 2\left( {\dfrac{3}{2}} \right)\left( x \right) + {{\left( {\dfrac{3}{2}} \right)}^2}} \right] + \left[ {{y^2} + 2\left( {\dfrac{5}{2}} \right)\left( y \right) + {{\left( {\dfrac{5}{2}} \right)}^2}} \right] = {\left( {\dfrac{3}{2}} \right)^2} + {\left( {\dfrac{5}{2}} \right)^2} - 4 \\
\Rightarrow \left[ {{{\left( {x + \dfrac{3}{2}} \right)}^2}} \right] + \left[ {{{\left( {y + \dfrac{5}{2}} \right)}^2}} \right] = \dfrac{9}{4} + \dfrac{{25}}{4} - 4 \\
\Rightarrow {\left[ {x - \left( { - \dfrac{3}{2}} \right)} \right]^2} + {\left[ {y - \left( { - \dfrac{5}{2}} \right)} \right]^2} = \dfrac{{9 + 25 - 16}}{4} \\
\Rightarrow {\left[ {x - \left( { - \dfrac{3}{2}} \right)} \right]^2} + {\left[ {y - \left( { - \dfrac{5}{2}} \right)} \right]^2} = \dfrac{{18}}{4} \\
\Rightarrow {\left[ {x - \left( { - \dfrac{3}{2}} \right)} \right]^2} + {\left[ {y - \left( { - \dfrac{5}{2}} \right)} \right]^2} = \dfrac{9}{2} \\
\Rightarrow {\left[ {x - \left( { - \dfrac{3}{2}} \right)} \right]^2} + {\left[ {y - \left( { - \dfrac{5}{2}} \right)} \right]^2} = {\left( {\dfrac{3}{{\sqrt 2 }}} \right)^2}{\text{ }} \to {\text{(4)}} \\
$
By comparing equations (3) and (4), we get
So, the centre of the circle ${x^2} + {y^2} + 3x + 5y + 4 = 0$ is ${{\text{C}}_1}\left( { - \dfrac{3}{2}, - \dfrac{5}{2}} \right)$ and radius is ${{\text{R}}_1} = \dfrac{3}{{\sqrt 2 }}$
Rewriting equation (2) in the same form as given by equation (3), we have
$
\Rightarrow {x^2} + 5x + {\left( {\dfrac{5}{2}} \right)^2} - {\left( {\dfrac{5}{2}} \right)^2} + {y^2} + 3y + {\left( {\dfrac{3}{2}} \right)^2} - {\left( {\dfrac{3}{2}} \right)^2} + 4 = 0 \\
\Rightarrow \left[ {{x^2} + 2\left( {\dfrac{5}{2}} \right)\left( x \right) + {{\left( {\dfrac{5}{2}} \right)}^2}} \right] + \left[ {{y^2} + 2\left( {\dfrac{3}{2}} \right)\left( y \right) + {{\left( {\dfrac{3}{2}} \right)}^2}} \right] = {\left( {\dfrac{5}{2}} \right)^2} + {\left( {\dfrac{3}{2}} \right)^2} - 4 \\
\Rightarrow \left[ {{{\left( {x + \dfrac{5}{2}} \right)}^2}} \right] + \left[ {{{\left( {y + \dfrac{3}{2}} \right)}^2}} \right] = \dfrac{{25}}{4} + \dfrac{9}{4} - 4 \\
\Rightarrow {\left[ {x - \left( { - \dfrac{5}{2}} \right)} \right]^2} + {\left[ {y - \left( { - \dfrac{3}{2}} \right)} \right]^2} = \dfrac{{25 + 9 - 16}}{4} \\
\Rightarrow {\left[ {x - \left( { - \dfrac{5}{2}} \right)} \right]^2} + {\left[ {y - \left( { - \dfrac{3}{2}} \right)} \right]^2} = \dfrac{{18}}{4} \\
\Rightarrow {\left[ {x - \left( { - \dfrac{5}{2}} \right)} \right]^2} + {\left[ {y - \left( { - \dfrac{3}{2}} \right)} \right]^2} = \dfrac{9}{2} \\
\Rightarrow {\left[ {x - \left( { - \dfrac{5}{2}} \right)} \right]^2} + {\left[ {y - \left( { - \dfrac{3}{2}} \right)} \right]^2} = {\left( {\dfrac{3}{{\sqrt 2 }}} \right)^2}{\text{ }} \to {\text{(5)}} \\
$
By comparing equations (3) and (5), we get
So, the centre of the circle ${x^2} + {y^2} + 5x + 3y + 4 = 0$ is ${{\text{C}}_2}\left( { - \dfrac{5}{2}, - \dfrac{3}{2}} \right)$ and radius is ${{\text{R}}_2} = \dfrac{3}{{\sqrt 2 }}$
According to the distance formula, the distance between any two points A(a,b) and B(c,d) is given by
\[d = \sqrt {{{\left( {c - a} \right)}^2} + {{\left( {d - b} \right)}^2}} \]
Using the above formula, the distance between the centres of the two circles i.e.,${{\text{C}}_1}\left( { - \dfrac{3}{2}, - \dfrac{5}{2}} \right)$ and ${{\text{C}}_2}\left( { - \dfrac{5}{2}, - \dfrac{3}{2}} \right)$ is given by
\[
\Rightarrow d = \sqrt {{{\left[ { - \dfrac{5}{2} - \left( { - \dfrac{3}{2}} \right)} \right]}^2} + {{\left[ { - \dfrac{3}{2} - \left( { - \dfrac{5}{2}} \right)} \right]}^2}} \\
\Rightarrow d = \sqrt {{{\left[ { - \dfrac{5}{2} + \dfrac{3}{2}} \right]}^2} + {{\left[ { - \dfrac{3}{2} + \dfrac{5}{2}} \right]}^2}} \\
\Rightarrow d = \sqrt {{{\left[ {\dfrac{{ - 5 + 3}}{2}} \right]}^2} + {{\left[ {\dfrac{{ - 3 + 5}}{2}} \right]}^2}} \\
\Rightarrow d = \sqrt {{{\left[ {\dfrac{{ - 2}}{2}} \right]}^2} + {{\left[ {\dfrac{2}{2}} \right]}^2}} \\
\Rightarrow d = \sqrt {{{\left[ { - 1} \right]}^2} + {{\left[ 1 \right]}^2}} \\
\Rightarrow d = \sqrt {1 + 1} \\
\Rightarrow d = \sqrt 2 \\
\]
Also, the length of the common tangent between two circles having radii as ${{\text{R}}_1}$ and ${{\text{R}}_2}$ is given by
${\text{L}} = \dfrac{{2{{\text{R}}_1}{{\text{R}}_2}}}{d}{\text{ }} \to {\text{(6)}}$ where d is the distance between the centres of the two given circles.
By putting ${{\text{R}}_1} = \dfrac{3}{{\sqrt 2 }}$, ${{\text{R}}_2} = \dfrac{3}{{\sqrt 2 }}$ and \[d = \sqrt 2 \] in equation (6), we get
\[
\Rightarrow {\text{L}} = \dfrac{{2\left( {\dfrac{3}{{\sqrt 2 }}} \right)\left( {\dfrac{3}{{\sqrt 2 }}} \right)}}{{\sqrt 2 }} \\
\Rightarrow {\text{L}} = \dfrac{{2\left( {\dfrac{9}{2}} \right)}}{{\sqrt 2 }} \\
\Rightarrow {\text{L}} = \dfrac{9}{{\sqrt 2 }} \\
\]
Therefore, the required length of the common chord of the two given circles is \[\dfrac{9}{{\sqrt 2 }}\].
Note- In this particular problem, we have converted the equations of the given two circles in the same form of the equation of any circle which is ${\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {r^2}$ in order to find the centre coordinates of both the circles and their radii which can further be utilized to get the value of the distance between the centres of these circles.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

